We propose a preconditioned variant of the modified HSS (MHSS) iteration method for solving a class of complex symmetric systems of linear equations. Under suitable conditions, we prove the convergence of the preconditioned MHSS (PMHSS) iteration method and discuss the spectral properties of the PMHSS-preconditioned matrix. Numerical implementations show that the resulting PMHSS preconditioner leads to fast convergence when it is used to precondition Krylov subspace iteration methods such as GMRES and its restarted variants. In particular, both the stationary PMHSS iteration and PMHSS-preconditioned GMRES show meshsize-independent and parameter-insensitive convergence behavior for the tested numerical examples. © 2010 Springer Science+Business Media, LLC.
On preconditioned MHSS iteration methods for complex symmetric linear systems
Benzi, Michele;
2011
Abstract
We propose a preconditioned variant of the modified HSS (MHSS) iteration method for solving a class of complex symmetric systems of linear equations. Under suitable conditions, we prove the convergence of the preconditioned MHSS (PMHSS) iteration method and discuss the spectral properties of the PMHSS-preconditioned matrix. Numerical implementations show that the resulting PMHSS preconditioner leads to fast convergence when it is used to precondition Krylov subspace iteration methods such as GMRES and its restarted variants. In particular, both the stationary PMHSS iteration and PMHSS-preconditioned GMRES show meshsize-independent and parameter-insensitive convergence behavior for the tested numerical examples. © 2010 Springer Science+Business Media, LLC.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.