We study the convergence of P-regular splitting iterative methods for non-Hermitian positive definite linear systems. Our main result is that P-regular splittings of the form A = M - N, where N = N*, are convergent. Natural examples of splittings satisfying the convergence conditions are constructed, and numerical experiments are performed to illustrate the convergence results obtained. Copyright © 2009, Kent State University.

P-regular splitting iterative methods for non-Hermitian positive definite linear systems

Benzi, Michele
2009

Abstract

We study the convergence of P-regular splitting iterative methods for non-Hermitian positive definite linear systems. Our main result is that P-regular splittings of the form A = M - N, where N = N*, are convergent. Natural examples of splittings satisfying the convergence conditions are constructed, and numerical experiments are performed to illustrate the convergence results obtained. Copyright © 2009, Kent State University.
2009
Convergence; Non-Hermitian positive definite matrices; P-regular splitting; Preconditioned GMRES; SOR methods; Analysis
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/75298
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
  • OpenAlex ND
social impact