We establish new approximation results, in the sense of Lusin, of Sobolev functions by Lipschitz ones, in some classes of non-doubling metric measure structures. Our proof technique relies upon estimates for heat semigroups and applies to Gaussian and RCD(K,∞) spaces. As a consequence, we obtain quantitative stability for regular Lagrangian flows in Gaussian settings.

Lusin-type approximation of Sobolev by Lipschitz functions, in Gaussian and RCD(K,∞) spaces

Ambrosio, Luigi
Membro del Collaboration Group
;
BRUÈ, Elia
Membro del Collaboration Group
;
2018

Abstract

We establish new approximation results, in the sense of Lusin, of Sobolev functions by Lipschitz ones, in some classes of non-doubling metric measure structures. Our proof technique relies upon estimates for heat semigroups and applies to Gaussian and RCD(K,∞) spaces. As a consequence, we obtain quantitative stability for regular Lagrangian flows in Gaussian settings.
2018
Settore MAT/05 - Analisi Matematica
Lusin type approximation; Sobolev functions; Wiener spaces; Mathematics (all)
File in questo prodotto:
File Dimensione Formato  
LipApp_Gaussian_eoffprint.pdf

Accesso chiuso

Tipologia: Published version
Licenza: Non pubblico
Dimensione 570.46 kB
Formato Adobe PDF
570.46 kB Adobe PDF   Richiedi una copia
1712.06315.pdf

Open Access dal 02/12/2020

Descrizione: Post-Print
Tipologia: Accepted version (post-print)
Licenza: Creative Commons
Dimensione 291.32 kB
Formato Adobe PDF
291.32 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/75425
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 12
  • OpenAlex ND
social impact