We establish new approximation results, in the sense of Lusin, of Sobolev functions by Lipschitz ones, in some classes of non-doubling metric measure structures. Our proof technique relies upon estimates for heat semigroups and applies to Gaussian and RCD(K,∞) spaces. As a consequence, we obtain quantitative stability for regular Lagrangian flows in Gaussian settings.
Lusin-type approximation of Sobolev by Lipschitz functions, in Gaussian and RCD(K,∞) spaces
Ambrosio, Luigi
Membro del Collaboration Group
;BRUÈ, EliaMembro del Collaboration Group
;
2018
Abstract
We establish new approximation results, in the sense of Lusin, of Sobolev functions by Lipschitz ones, in some classes of non-doubling metric measure structures. Our proof technique relies upon estimates for heat semigroups and applies to Gaussian and RCD(K,∞) spaces. As a consequence, we obtain quantitative stability for regular Lagrangian flows in Gaussian settings.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
LipApp_Gaussian_eoffprint.pdf
Accesso chiuso
Tipologia:
Published version
Licenza:
Non pubblico
Dimensione
570.46 kB
Formato
Adobe PDF
|
570.46 kB | Adobe PDF | Richiedi una copia |
1712.06315.pdf
Open Access dal 02/12/2020
Descrizione: Post-Print
Tipologia:
Accepted version (post-print)
Licenza:
Creative Commons
Dimensione
291.32 kB
Formato
Adobe PDF
|
291.32 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.