We establish new approximation results, in the sense of Lusin, of Sobolev functions by Lipschitz ones, in some classes of non-doubling metric measure structures. Our proof technique relies upon estimates for heat semigroups and applies to Gaussian and RCD(K,∞) spaces. As a consequence, we obtain quantitative stability for regular Lagrangian flows in Gaussian settings.

We establish new approximation results, in the sense of Lusin, of Sobolev functions by Lipschitz ones, in some classes of non-doubling metric measure structures. Our proof technique relies upon estimates for heat semigroups and applies to Gaussian and RCD(K,∞) spaces. As a consequence, we obtain quantitative stability for regular Lagrangian flows in Gaussian settings.

Lusin-type approximation of Sobolev by Lipschitz functions, in Gaussian and RCD(K,∞) spaces

Ambrosio, Luigi
Membro del Collaboration Group
;
BRUÈ, Elia
Membro del Collaboration Group
;
2018

Abstract

We establish new approximation results, in the sense of Lusin, of Sobolev functions by Lipschitz ones, in some classes of non-doubling metric measure structures. Our proof technique relies upon estimates for heat semigroups and applies to Gaussian and RCD(K,∞) spaces. As a consequence, we obtain quantitative stability for regular Lagrangian flows in Gaussian settings.
2018
Settore MAT/05 - Analisi Matematica
Lusin type approximation; Sobolev functions; Wiener spaces; Mathematics (all)
File in questo prodotto:
File Dimensione Formato  
LipApp_Gaussian_eoffprint.pdf

Accesso chiuso

Tipologia: Published version
Licenza: Non pubblico
Dimensione 570.46 kB
Formato Adobe PDF
570.46 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
1712.06315.pdf

Open Access dal 02/12/2020

Descrizione: Post-Print
Tipologia: Accepted version (post-print)
Licenza: Creative commons
Dimensione 291.32 kB
Formato Adobe PDF
291.32 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/75425
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 10
social impact