We have studied two-photon nonlinear optical effects arising in a microcavity geometry from resonant two-photon absorption or second-harmonic generation. The transmission spectrum of the cavity is shown to depend on light intensity according to a simple two-level picture with an intensity-dependent coupling: at resonance the system exhibits a two-photon Rabi splitting. The absorption spectrum of a weak probe beam in a pumped cavity is found to strongly depend on pump intensity and detuning; the resulting effect is a sort of two-photon analogue of the usual optical Stark effect. For moderate pump intensities a two-level picture with a pump-dependent coupling can account for the main results, while at higher intensities new unexpected features show up; in particular, we predict the appearance of gain in well-determined spectral regions due to hyper-Raman processes. Finally, we have shown how the coupling coefficients appearing in our formalism can be obtained from a detailed knowledge of the material and geometrical properties of a specific system. For illustrative purposes, we have estimated the required light intensities using realistic data for a GaAs-based semiconductor microcavity. [S0163-1829(99)00932-7].

Two-photon Rabi splitting and optical Stark effect in semiconductor microcavities

LA ROCCA, Giuseppe Carlo
1999

Abstract

We have studied two-photon nonlinear optical effects arising in a microcavity geometry from resonant two-photon absorption or second-harmonic generation. The transmission spectrum of the cavity is shown to depend on light intensity according to a simple two-level picture with an intensity-dependent coupling: at resonance the system exhibits a two-photon Rabi splitting. The absorption spectrum of a weak probe beam in a pumped cavity is found to strongly depend on pump intensity and detuning; the resulting effect is a sort of two-photon analogue of the usual optical Stark effect. For moderate pump intensities a two-level picture with a pump-dependent coupling can account for the main results, while at higher intensities new unexpected features show up; in particular, we predict the appearance of gain in well-determined spectral regions due to hyper-Raman processes. Finally, we have shown how the coupling coefficients appearing in our formalism can be obtained from a detailed knowledge of the material and geometrical properties of a specific system. For illustrative purposes, we have estimated the required light intensities using realistic data for a GaAs-based semiconductor microcavity. [S0163-1829(99)00932-7].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/7569
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 23
social impact