By combining rotational spectroscopy in supersonic expansion with the capability of state‐of‐the‐art quantum‐chemical computations in accurately determining structural and energetic properties, the genuine nature of a sulfur–sulfur chalcogen bond between dimethyl sulfide and sulfur dioxide has been unveiled in a gas‐jet environment free from collision, solvent and matrix perturbations. A SAPT analysis pointed out that electrostatic S⋅⋅⋅S interactions play the dominant role in determining the stability of the complex, largely overcoming dispersion and C−H⋅⋅⋅O hydrogen‐bond contributions. Indeed, in agreement with the analysis of the quadrupole‐coupling constants and of the methyl internal rotation barrier, the NBO and NOCV/CD approaches show a marked charge transfer between the sulfur atoms. Based on the assignment of the rotational spectra for 7 isotopologues, an accurate semi‐experimental equilibrium structure for the heavy‐atom backbone of the molecular complex has been determined, which is characterized by a S⋅⋅⋅S distance (2.947(3) Å) well below the sum of van der Waals radii.
Unveiling the Sulfur–Sulfur Bridge : Accurate Structural and Energetic Characterization of a Homochalcogen Intermolecular Bond
Spada, Lorenzo;Alessandrini, Silvia;Rampino, Sergio;Tasinato, Nicola;Mendolicchio, Marco;Gauss, Jürgen;Puzzarini, Cristina;Grabow, Jens-Uwe
;Barone, Vincenzo
2018
Abstract
By combining rotational spectroscopy in supersonic expansion with the capability of state‐of‐the‐art quantum‐chemical computations in accurately determining structural and energetic properties, the genuine nature of a sulfur–sulfur chalcogen bond between dimethyl sulfide and sulfur dioxide has been unveiled in a gas‐jet environment free from collision, solvent and matrix perturbations. A SAPT analysis pointed out that electrostatic S⋅⋅⋅S interactions play the dominant role in determining the stability of the complex, largely overcoming dispersion and C−H⋅⋅⋅O hydrogen‐bond contributions. Indeed, in agreement with the analysis of the quadrupole‐coupling constants and of the methyl internal rotation barrier, the NBO and NOCV/CD approaches show a marked charge transfer between the sulfur atoms. Based on the assignment of the rotational spectra for 7 isotopologues, an accurate semi‐experimental equilibrium structure for the heavy‐atom backbone of the molecular complex has been determined, which is characterized by a S⋅⋅⋅S distance (2.947(3) Å) well below the sum of van der Waals radii.File | Dimensione | Formato | |
---|---|---|---|
anie.201810637.pdf
Accesso chiuso
Tipologia:
Published version
Licenza:
Non pubblico
Dimensione
1.24 MB
Formato
Adobe PDF
|
1.24 MB | Adobe PDF | Richiedi una copia |
S-S.pdf
accesso aperto
Tipologia:
Accepted version (post-print)
Licenza:
Solo Lettura
Dimensione
868.45 kB
Formato
Adobe PDF
|
868.45 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.