We study finite-energy blow-ups for prescribed Morse scalar curvatures in both the subcritical and the critical regime. After general considerations on Palais-Smale sequences we determine precise blow up rates for subcritical solutions: in particular the possibility of tower bubbles is excluded in all dimensions. In subsequent papers we aim to establish the sharpness of this result, proving a converse existence statement, together with a one to one correspondence of blowing-up subcritical solutions and em critical points at infinity. This analysis will be then applied to deduce new existence results for the geometric problem.

Prescribing Morse scalar curvatures: blow-up analysis

Andrea Malchiodi
;
2021

Abstract

We study finite-energy blow-ups for prescribed Morse scalar curvatures in both the subcritical and the critical regime. After general considerations on Palais-Smale sequences we determine precise blow up rates for subcritical solutions: in particular the possibility of tower bubbles is excluded in all dimensions. In subsequent papers we aim to establish the sharpness of this result, proving a converse existence statement, together with a one to one correspondence of blowing-up subcritical solutions and em critical points at infinity. This analysis will be then applied to deduce new existence results for the geometric problem.
2021
Settore MAT/05 - Analisi Matematica
Mathematics - Analysis of PDEs; Mathematics - Analysis of PDEs
   Fondi MUR
File in questo prodotto:
File Dimensione Formato  
MM-IMRN-21.pdf

Accesso chiuso

Descrizione: pdf file
Tipologia: Published version
Licenza: Non pubblico
Dimensione 878.34 kB
Formato Adobe PDF
878.34 kB Adobe PDF   Richiedi una copia
11384_76386_pr.pdf

Open Access dal 17/08/2022

Tipologia: Accepted version (post-print)
Licenza: Solo Lettura
Dimensione 942.43 kB
Formato Adobe PDF
942.43 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/76386
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 3
  • OpenAlex ND
social impact