We investigate weighted Sobolev spaces on metric measure spaces (X,d,m). Denoting by p the weight function, we compare the space W1,p(X,d, pm) (which always coincides with the closure H1,p(X, d, pm) of Lipschitz functions) with the weighted Sobolev spaces W1,pp (X, d,m) and H1,pp (X, d,m) defined as in the Euclidean theory of weighted Sobolev spaces. Under mild assumptions on the metric measure structure and on the weight we show that W1,p(X, d, pm) D H1,pp (X, d,m). We also adapt the results in [23] and in the recent paper [27] to the metric measure setting, considering appropriate conditions on p that ensure the equality W1,pp (X, d,m) D H1,pp (X, d,m).

Weighted Sobolev spaces on metric measure spaces

Ambrosio, Luigi
;
Pinamonti, Andrea;Speight, Gareth
2019

Abstract

We investigate weighted Sobolev spaces on metric measure spaces (X,d,m). Denoting by p the weight function, we compare the space W1,p(X,d, pm) (which always coincides with the closure H1,p(X, d, pm) of Lipschitz functions) with the weighted Sobolev spaces W1,pp (X, d,m) and H1,pp (X, d,m) defined as in the Euclidean theory of weighted Sobolev spaces. Under mild assumptions on the metric measure structure and on the weight we show that W1,p(X, d, pm) D H1,pp (X, d,m). We also adapt the results in [23] and in the recent paper [27] to the metric measure setting, considering appropriate conditions on p that ensure the equality W1,pp (X, d,m) D H1,pp (X, d,m).
2019
Settore MAT/05 - Analisi Matematica
Mathematics (all); Applied Mathematics
File in questo prodotto:
File Dimensione Formato  
Weighted_Sobolev_spaces.pdf

accesso aperto

Tipologia: Published version
Licenza: Creative Commons
Dimensione 373.77 kB
Formato Adobe PDF
373.77 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/76405
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 11
  • OpenAlex ND
social impact