Light scattering was recently demonstrated to serve as an intrinsic indicator for pancreatic islet cell mass and secretion. The insulin secretory granule (ISG), in particular, was proposed to be a reasonable candidate as the main intracellular source of scattered light due to the densely-packed insulin semi-crystal in the granule lumen. This scenario, if confirmed, would in principle open new perspectives for label-free single-granule imaging, tracking, and analysis. Contrary to such expectations, here we demonstrate that ISGs are not a primary source of scattering in primary human β-cells, as well as in immortalized β-like cells, quantitatively not superior to other intracellular organelles/structures, such as lysosomes and internal membranes. This result is achieved through multi-channel imaging of scattered light along with fluorescence arising from selectively-labelled ISGs. Co-localization and spatiotemporal cross-correlation analysis is performed on these signals, and compared among different cell lines. Obtained results suggest a careful re-thinking of the possibility to exploit intrinsic optical properties originating from ISGs for single-granule imaging purposes.

Probing the light scattering properties of insulin secretory granules in single live cells

FERRI, Gianmarco;Cardarelli Francesco
2018

Abstract

Light scattering was recently demonstrated to serve as an intrinsic indicator for pancreatic islet cell mass and secretion. The insulin secretory granule (ISG), in particular, was proposed to be a reasonable candidate as the main intracellular source of scattered light due to the densely-packed insulin semi-crystal in the granule lumen. This scenario, if confirmed, would in principle open new perspectives for label-free single-granule imaging, tracking, and analysis. Contrary to such expectations, here we demonstrate that ISGs are not a primary source of scattering in primary human β-cells, as well as in immortalized β-like cells, quantitatively not superior to other intracellular organelles/structures, such as lysosomes and internal membranes. This result is achieved through multi-channel imaging of scattered light along with fluorescence arising from selectively-labelled ISGs. Co-localization and spatiotemporal cross-correlation analysis is performed on these signals, and compared among different cell lines. Obtained results suggest a careful re-thinking of the possibility to exploit intrinsic optical properties originating from ISGs for single-granule imaging purposes.
2018
Correlation spectroscopy, Fluorescence, Insulin secretory granule, Living cell, Scattering, Tissue
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/76489
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
  • OpenAlex ND
social impact