Serum IgE was used to isolate a cDNA coding for a 9.4-kDa two EF-hand calcium-binding allergen, Aln g 4, from a lambda gt11 expression cDNA library constructed from alder (Alnus glutinosa) pollen. rAln g 4 was overexpressed in Escherichia coli and purified to homogeneity. It reacted with serum IgE from 18% of pollen-allergic patients (n = 122); shared IgE epitopes with homologous allergens present in tree, grass, and weed pollens; and thus belongs to a family of highly cross-reactive pollen allergens. Exposure of two E. coli-expressed rAln g 4 fragments comprising amino acids 1-41 and 42-85 to patients' IgE Abs, as well as to a rabbit antiserum raised against purified rAln g 4, indicated that most of the B cell epitopes reside in the N-terminal portion of the protein. IgE recognition of Aln g 4 was strongly modulated by the presence or absence of calcium. Circular dichroism analysis of rAln g 4 revealed that the protein consisted mostly of alpha helical secondary structure and possessed a remarkable thermal stability and refolding capacity, a property that was greatly reduced after calcium depletion. Circular dichroism analysis of the calcium-bound and apo form of rAln g 4 indicated that calcium-induced modulation of IgE binding could be due to changes in the protein conformation. Purified rAln g 4 elicited dose-dependent basophil histamine release and immediate type skin reactions in sensitized patients. It may hence be useful for allergy diagnosis and for specific immunotherapy.

Molecular and immunologic characterization of a highly cross-reactive two EF-hand calcium-binding alder pollen allergen, Aln g 4: Structural basis for calcium-modulated IgE recognition

Pastore A;
1998

Abstract

Serum IgE was used to isolate a cDNA coding for a 9.4-kDa two EF-hand calcium-binding allergen, Aln g 4, from a lambda gt11 expression cDNA library constructed from alder (Alnus glutinosa) pollen. rAln g 4 was overexpressed in Escherichia coli and purified to homogeneity. It reacted with serum IgE from 18% of pollen-allergic patients (n = 122); shared IgE epitopes with homologous allergens present in tree, grass, and weed pollens; and thus belongs to a family of highly cross-reactive pollen allergens. Exposure of two E. coli-expressed rAln g 4 fragments comprising amino acids 1-41 and 42-85 to patients' IgE Abs, as well as to a rabbit antiserum raised against purified rAln g 4, indicated that most of the B cell epitopes reside in the N-terminal portion of the protein. IgE recognition of Aln g 4 was strongly modulated by the presence or absence of calcium. Circular dichroism analysis of rAln g 4 revealed that the protein consisted mostly of alpha helical secondary structure and possessed a remarkable thermal stability and refolding capacity, a property that was greatly reduced after calcium depletion. Circular dichroism analysis of the calcium-bound and apo form of rAln g 4 indicated that calcium-induced modulation of IgE binding could be due to changes in the protein conformation. Purified rAln g 4 elicited dose-dependent basophil histamine release and immediate type skin reactions in sensitized patients. It may hence be useful for allergy diagnosis and for specific immunotherapy.
1998
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/77052
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 81
  • ???jsp.display-item.citation.isi??? 74
  • OpenAlex ND
social impact