Increasing evidence shows that -amyloid (A) peptides, which are associated with Alzheimer disease (AD), are heavily glycated in patients, suggesting a role of this irreversible nonenzymatic post-translational modification in pathology. Previous reports have shown that glycation increases the toxicity of the A peptides, although little is known about the mechanism. Here, we used the natural metabolic by-product methylglyoxal as a glycating agent and exploited various spectroscopic methods and atomic force microscopy to study how glycation affects the structures of the A40 and A42 peptides, the aggregation pathway, and the morphologies of the resulting aggregates. We found that glycation significantly slows down but does not prevent -conversion to mature fibers. We propose that the previously reported higher toxicity of the glycated A peptides could be explained by a longer persistence in an oligomeric form, usually believed to be the toxic species.

Glycation affects fibril formation of a peptides

Pastore, Annalisa
2018

Abstract

Increasing evidence shows that -amyloid (A) peptides, which are associated with Alzheimer disease (AD), are heavily glycated in patients, suggesting a role of this irreversible nonenzymatic post-translational modification in pathology. Previous reports have shown that glycation increases the toxicity of the A peptides, although little is known about the mechanism. Here, we used the natural metabolic by-product methylglyoxal as a glycating agent and exploited various spectroscopic methods and atomic force microscopy to study how glycation affects the structures of the A40 and A42 peptides, the aggregation pathway, and the morphologies of the resulting aggregates. We found that glycation significantly slows down but does not prevent -conversion to mature fibers. We propose that the previously reported higher toxicity of the glycated A peptides could be explained by a longer persistence in an oligomeric form, usually believed to be the toxic species.
2018
Alzheimer disease; aggregation; amyloid plaques; beta-amyloid; carbohydrate; carbohydrates; fibril formation; glycation; glycobiology; glycosylation; neurodegeneration; protein aggregation; structural biology; Amino Acid Sequence; Amyloid; Amyloid beta-Peptides; Glycosylation; Humans; Peptide Fragments; Protein Conformation; Sequence Homology; Alzheimer Disease; Protein Aggregation, Pathological; Protein Processing, Post-Translational; Biochemistry; Molecular Biology; Cell Biology
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/77917
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 49
  • ???jsp.display-item.citation.isi??? 44
social impact