InP-InAs-InP multi-shell nanowires (NWs) were grown in the wurtzite (WZ) or zincblende (ZB) crystal phase and their photoluminescence (PL) properties were investigated at low temperature (≈6 K) for different measurement geometries. PL emissions from the NWs were carefully studied in a wide energy range from 0.7 to 1.6 eV. The different features observed in the PL spectra for increasing energies are attributed to four distinct emitting domains of these nano-heterostructures: the InAs island (axially grown), the thin InAs capping shell (radially grown), the crystal-phase quantum disks arising from the coexistence of InP ZB and WZ segments in the same NW, and the InP portions of the NW. These results provide a useful frame for the rational implementation of InP-InAs-InP multi-shell NWs containing various quantum confined domains as polychromatic optically active components in nanodevices for quantum information and communication technologies.
Polychromatic emission in a wide energy range from InP-InAs-InP multi-shell nanowires
Bertoni, A.;Beltram, F.;Sorba, L.;Xu, X.;Rossella, F.
2019
Abstract
InP-InAs-InP multi-shell nanowires (NWs) were grown in the wurtzite (WZ) or zincblende (ZB) crystal phase and their photoluminescence (PL) properties were investigated at low temperature (≈6 K) for different measurement geometries. PL emissions from the NWs were carefully studied in a wide energy range from 0.7 to 1.6 eV. The different features observed in the PL spectra for increasing energies are attributed to four distinct emitting domains of these nano-heterostructures: the InAs island (axially grown), the thin InAs capping shell (radially grown), the crystal-phase quantum disks arising from the coexistence of InP ZB and WZ segments in the same NW, and the InP portions of the NW. These results provide a useful frame for the rational implementation of InP-InAs-InP multi-shell NWs containing various quantum confined domains as polychromatic optically active components in nanodevices for quantum information and communication technologies.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.