We prove that in any Sobolev space which is subcritical with respect to the Sobolev Embedding Theorem there exists a closed infinite dimensional linear subspace whose non zero elements are nowhere bounded functions. We also prove the existence of a closed infinite dimensional linear subspace whose non zero elements are nowhere Lq functions for suitable values of q larger than the Sobolev exponent.
Sobolev subspaces of nowhere bounded functions
STEFANI, GIORGIO
2016
Abstract
We prove that in any Sobolev space which is subcritical with respect to the Sobolev Embedding Theorem there exists a closed infinite dimensional linear subspace whose non zero elements are nowhere bounded functions. We also prove the existence of a closed infinite dimensional linear subspace whose non zero elements are nowhere Lq functions for suitable values of q larger than the Sobolev exponent.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
preprint.pdf
accesso aperto
Tipologia:
Submitted version (pre-print)
Licenza:
Solo Lettura
Dimensione
361.46 kB
Formato
Adobe PDF
|
361.46 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.