Given α > 0, we construct a weighted Lebesgue measure on \mathbb{R}^n for which the family of nonconstant curves has p-modulus zero for p ≤ 1 + α but the weight is a Muckenhoupt A_p weight for p > 1 + α. In particular, the p-weak gradient is trivial for small p but nontrivial for large p. This answers an open question posed by several authors. We also give a full description of the p-weak gradient for any locally finite Borel measure on \mathbb{R}.

The p-weak gradient depends on p

di Marino S.;Speight G.
2015

Abstract

Given α > 0, we construct a weighted Lebesgue measure on \mathbb{R}^n for which the family of nonconstant curves has p-modulus zero for p ≤ 1 + α but the weight is a Muckenhoupt A_p weight for p > 1 + α. In particular, the p-weak gradient is trivial for small p but nontrivial for large p. This answers an open question posed by several authors. We also give a full description of the p-weak gradient for any locally finite Borel measure on \mathbb{R}.
2015
Settore MAT/05 - Analisi Matematica
Settore MATH-03/A - Analisi matematica
File in questo prodotto:
File Dimensione Formato  
Dependence of the p-Weak Gradient on p.pdf

accesso aperto

Tipologia: Submitted version (pre-print)
Licenza: Creative Commons
Dimensione 305.6 kB
Formato Adobe PDF
305.6 kB Adobe PDF
S0002-9939-2015-12641-X.pdf

Accesso chiuso

Tipologia: Published version
Licenza: Tutti i diritti riservati
Dimensione 222.68 kB
Formato Adobe PDF
222.68 kB Adobe PDF   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/79428
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 29
  • ???jsp.display-item.citation.isi??? 27
  • OpenAlex 35
social impact