Circular dichroism spectra in the IR range (VCD = vibrational circular dichroism) and in the UV range (ECD = electronic circular dichroism) have been recorded for both enantiomers of simple mono-substituted ferrocenes containing chiral pendants: 1-acetoxyethylferrocene, 1, 1-methoxyethylferrocene, 2, and 1-hydroxyethylferrocene, 3; the related disubstituted 1,1′-bis(1-hydroxyethyl)ferrocene, 4, was also considered. These two types of spectra, with the support of DFT calculations, concur to unequivocally confirm the absolute configuration for 1-4. In particular, our computational results point out the clear advantage of using an anharmonic oscillator model for the interpretation of VCD spectra of chiral ferrocenes. Interesting conformational properties are either confirmed or established by the technique, like the eclipsed conformation of the two cyclopentadienyl rings and an intra-molecular interaction involving the OH for 3. For 4, NMR, VCD and IR spectra are compatible with dimer formation and in this case a distorted conformation is predicted. Of utmost importance for the absolute configuration assignment in mono-substituted ferrocenes, we were able to identify a diagnostic VCD band at 950 cm -1 and a (low intensity) ECD band that clearly indicate the absolute configuration of the whole series.
Ferrocenes with simple chiral substituents: An in-depth theoretical and experimental VCD and ECD study
Mazzeo G.;ABBATE, Sergio;Paoloni L.;Bloino J.;Rampino S.;Barone V.
2019
Abstract
Circular dichroism spectra in the IR range (VCD = vibrational circular dichroism) and in the UV range (ECD = electronic circular dichroism) have been recorded for both enantiomers of simple mono-substituted ferrocenes containing chiral pendants: 1-acetoxyethylferrocene, 1, 1-methoxyethylferrocene, 2, and 1-hydroxyethylferrocene, 3; the related disubstituted 1,1′-bis(1-hydroxyethyl)ferrocene, 4, was also considered. These two types of spectra, with the support of DFT calculations, concur to unequivocally confirm the absolute configuration for 1-4. In particular, our computational results point out the clear advantage of using an anharmonic oscillator model for the interpretation of VCD spectra of chiral ferrocenes. Interesting conformational properties are either confirmed or established by the technique, like the eclipsed conformation of the two cyclopentadienyl rings and an intra-molecular interaction involving the OH for 3. For 4, NMR, VCD and IR spectra are compatible with dimer formation and in this case a distorted conformation is predicted. Of utmost importance for the absolute configuration assignment in mono-substituted ferrocenes, we were able to identify a diagnostic VCD band at 950 cm -1 and a (low intensity) ECD band that clearly indicate the absolute configuration of the whole series.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.