We consider a class of simple one parameter families of interval maps, and we study how metric (resp. topological) entropy changes as the parameter varies. We show that in many cases the entropy displays a semi-regular behaviour, i.e. it is smooth on an open and dense set. This feature is due to a combinatorial property called matching, which was first observed in the parametric family of α-continued fractions introduced by Nakada and Natsui (2008 Nonlinearity 21 1207–25).

Matching in a family of piecewise affine maps

Bruin H.;Carminati C.;Marmi S.
2019

Abstract

We consider a class of simple one parameter families of interval maps, and we study how metric (resp. topological) entropy changes as the parameter varies. We show that in many cases the entropy displays a semi-regular behaviour, i.e. it is smooth on an open and dense set. This feature is due to a combinatorial property called matching, which was first observed in the parametric family of α-continued fractions introduced by Nakada and Natsui (2008 Nonlinearity 21 1207–25).
2019
Settore MAT/07 - Fisica Matematica
bifurcation; ergodic; interval map; invariant measure; matching; metric entropy
File in questo prodotto:
File Dimensione Formato  
Bruin_2019_Nonlinearity_32_172.pdf

Accesso chiuso

Tipologia: Published version
Licenza: Non pubblico
Dimensione 3.14 MB
Formato Adobe PDF
3.14 MB Adobe PDF   Richiedi una copia
bcmp_preprint_1707.07488.pdf

accesso aperto

Tipologia: Submitted version (pre-print)
Licenza: Solo Lettura
Dimensione 779.26 kB
Formato Adobe PDF
779.26 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/81247
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 11
  • OpenAlex ND
social impact