We analyze the nonequilibrium dynamics of a gas of interacting photons in an array of coupled dissipative nonlinear cavities when driven by a pulsed external coherent field. Using a mean-field approach, we show that the response of the system is strongly sensitive to the underlying (equilibrium) quantum phase transition from a Mott insulator to a superfluid state at commensurate filling. We find that the coherence of the cavity emission after a quantum quench can be used to determine the phase diagram of an optical many-body system even in the presence of dissipation.
Signatures of the superfluid-insulator phase transition in laser-driven dissipative nonlinear cavity arrays
GIOVANNETTI, VITTORIO;FAZIO, ROSARIO;
2010
Abstract
We analyze the nonequilibrium dynamics of a gas of interacting photons in an array of coupled dissipative nonlinear cavities when driven by a pulsed external coherent field. Using a mean-field approach, we show that the response of the system is strongly sensitive to the underlying (equilibrium) quantum phase transition from a Mott insulator to a superfluid state at commensurate filling. We find that the coherence of the cavity emission after a quantum quench can be used to determine the phase diagram of an optical many-body system even in the presence of dissipation.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.