Existence of distributional solutions of a modified surface quasi-geostrophic equation is proved for μ-almost every initial condition, where μ is a suitable Gaussian measure. The result is the by-product of existence of a stationary solution with white noise marginal. This solution is constructed as a limit of random point vortices, uniformly distributed and rescaled according to the Central Limit Theorem.

mSQG equations in distributional spaces and point vortex approximation

Flandoli F.;Saal M.
2019

Abstract

Existence of distributional solutions of a modified surface quasi-geostrophic equation is proved for μ-almost every initial condition, where μ is a suitable Gaussian measure. The result is the by-product of existence of a stationary solution with white noise marginal. This solution is constructed as a limit of random point vortices, uniformly distributed and rescaled according to the Central Limit Theorem.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/82036
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 12
  • OpenAlex ND
social impact