We discuss absolute calibration strategies for Phase I of the Hydrogen Epoch of Reionization Array (HERA), which aims to measure the cosmological 21 cm signal from the Epoch of Reionization. HERA is a drift-scan array with a 10° wide field of view, meaning bright, well-characterized point-source transits are scarce. This, combined with HERA's redundant sampling of the uv plane and the modest angular resolution of the Phase I instrument, make traditional sky-based and self-calibration techniques difficult to implement with high dynamic range. Nonetheless, in this work, we demonstrate calibration for HERA using point-source catalogs and electromagnetic simulations of its primary beam. We show that unmodeled diffuse flux and instrumental contaminants can corrupt the gain solutions and present a gain-smoothing approach for mitigating their impact on the 21 cm power spectrum. We also demonstrate a hybrid sky and redundant calibration scheme and compare it to pure sky-based calibration, showing only a marginal improvement to the gain solutions at intermediate delay scales. Our work suggests that the HERA Phase I system can be well calibrated for a foreground avoidance power spectrum estimator by applying direction-independent gains with a small set of degrees of freedom across the frequency and time axes.

Absolute Calibration Strategies for the Hydrogen Epoch of Reionization Array and Their Impact on the 21 cm Power Spectrum

Greig B.;Mesinger A.;
2020

Abstract

We discuss absolute calibration strategies for Phase I of the Hydrogen Epoch of Reionization Array (HERA), which aims to measure the cosmological 21 cm signal from the Epoch of Reionization. HERA is a drift-scan array with a 10° wide field of view, meaning bright, well-characterized point-source transits are scarce. This, combined with HERA's redundant sampling of the uv plane and the modest angular resolution of the Phase I instrument, make traditional sky-based and self-calibration techniques difficult to implement with high dynamic range. Nonetheless, in this work, we demonstrate calibration for HERA using point-source catalogs and electromagnetic simulations of its primary beam. We show that unmodeled diffuse flux and instrumental contaminants can corrupt the gain solutions and present a gain-smoothing approach for mitigating their impact on the 21 cm power spectrum. We also demonstrate a hybrid sky and redundant calibration scheme and compare it to pure sky-based calibration, showing only a marginal improvement to the gain solutions at intermediate delay scales. Our work suggests that the HERA Phase I system can be well calibrated for a foreground avoidance power spectrum estimator by applying direction-independent gains with a small set of degrees of freedom across the frequency and time axes.
2020
Settore FIS/05 - Astronomia e Astrofisica
File in questo prodotto:
File Dimensione Formato  
Kern_2020_ApJ_890_122.pdf

accesso aperto

Tipologia: Published version
Licenza: Solo Lettura
Dimensione 31.21 MB
Formato Adobe PDF
31.21 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/82544
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 37
  • ???jsp.display-item.citation.isi??? 32
social impact