By means of 3D hydrodynamical simulations, we evaluate here the impact that supernova (SN) explosions occurring within wind-driven bubbles have on the survival or destruction of dust grains. We consider both the dust generated within the ejecta and the dust initially present in the ambient gas and later locked up in the surrounding wind-driven shell (WDS). The collision of the SN blast wave with the WDS leads to a transmitted shock that moves into the shell and a reflected shock that moves into the ejecta. The transmitted shock is capable of destroying large amounts of the dust locked in the shell, but only if the mass of the WDS is small, less than a few tens the ejected mass. Conversely, massive WDSs, with several times the ejected mass, lead upon the interaction to strong radiative cooling, which inhibits the Sedov-Taylor phase and weakens the transmitted shock, making it unable to traverse the WDS. In such a case, the destruction/disruption of the ambient dust is largely inhibited. On the other hand, the SN remnants grow rapidly in the very tenuous region excavated by the stellar winds, and thus a large fraction of the dust generated within the ejecta is not efficiently destroyed by the SN reverse shock, nor by the reflected shock. Our calculations favor a scenario in which core-collapse SNe within sufficiently massive WDSs supply more dust to the interstellar medium than they are able to destroy.

Supernovae within Pre-existing Wind-blown Bubbles: Dust Injection versus Ambient Dust Destruction

Ferrara A.
2019

Abstract

By means of 3D hydrodynamical simulations, we evaluate here the impact that supernova (SN) explosions occurring within wind-driven bubbles have on the survival or destruction of dust grains. We consider both the dust generated within the ejecta and the dust initially present in the ambient gas and later locked up in the surrounding wind-driven shell (WDS). The collision of the SN blast wave with the WDS leads to a transmitted shock that moves into the shell and a reflected shock that moves into the ejecta. The transmitted shock is capable of destroying large amounts of the dust locked in the shell, but only if the mass of the WDS is small, less than a few tens the ejected mass. Conversely, massive WDSs, with several times the ejected mass, lead upon the interaction to strong radiative cooling, which inhibits the Sedov-Taylor phase and weakens the transmitted shock, making it unable to traverse the WDS. In such a case, the destruction/disruption of the ambient dust is largely inhibited. On the other hand, the SN remnants grow rapidly in the very tenuous region excavated by the stellar winds, and thus a large fraction of the dust generated within the ejecta is not efficiently destroyed by the SN reverse shock, nor by the reflected shock. Our calculations favor a scenario in which core-collapse SNe within sufficiently massive WDSs supply more dust to the interstellar medium than they are able to destroy.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/82840
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 23
social impact