The Mordell-Lang conjecture (proven by Faltings, Vojta and Mc- Quillan) states that the intersection of a subvariety V of a semiabelian variety G defined over an algebraically closed field k of characteristic 0 with a finite rank subgroup σ ≤ G(k) is a finite union of cosets of subgroups of ... We explore a variant of this conjecture when G = Ga × A for an abelian variety A defined over k.

A variant of the Mordell-Lang conjecture!

Zannier U.
2019

Abstract

The Mordell-Lang conjecture (proven by Faltings, Vojta and Mc- Quillan) states that the intersection of a subvariety V of a semiabelian variety G defined over an algebraically closed field k of characteristic 0 with a finite rank subgroup σ ≤ G(k) is a finite union of cosets of subgroups of ... We explore a variant of this conjecture when G = Ga × A for an abelian variety A defined over k.
2019
Settore MAT/03 - Geometria
File in questo prodotto:
File Dimensione Formato  
MRL_2019_Ghioca_Scanlon_.pdf

Accesso chiuso

Tipologia: Published version
Licenza: Non pubblico
Dimensione 244.54 kB
Formato Adobe PDF
244.54 kB Adobe PDF   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/83094
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
  • OpenAlex ND
social impact