The Mordell-Lang conjecture (proven by Faltings, Vojta and Mc- Quillan) states that the intersection of a subvariety V of a semiabelian variety G defined over an algebraically closed field k of characteristic 0 with a finite rank subgroup σ ≤ G(k) is a finite union of cosets of subgroups of ... We explore a variant of this conjecture when G = Ga × A for an abelian variety A defined over k.
A variant of the Mordell-Lang conjecture!
Zannier U.
2019
Abstract
The Mordell-Lang conjecture (proven by Faltings, Vojta and Mc- Quillan) states that the intersection of a subvariety V of a semiabelian variety G defined over an algebraically closed field k of characteristic 0 with a finite rank subgroup σ ≤ G(k) is a finite union of cosets of subgroups of ... We explore a variant of this conjecture when G = Ga × A for an abelian variety A defined over k.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
MRL_2019_Ghioca_Scanlon_.pdf
Accesso chiuso
Tipologia:
Published version
Licenza:
Non pubblico
Dimensione
244.54 kB
Formato
Adobe PDF
|
244.54 kB | Adobe PDF | Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.