The interpretation and analysis of experimental resonance-Raman (RR) spectra can be significantly facilitated by vibronic computations based on reliable quantum-mechanical (QM) methods. With the aim of improving the description of large and flexible molecules, our recent time-dependent formulation to compute vibrationally resolved electronic spectra, based on Cartesian coordinates, has been extended to support internal coordinates. A set of nonredundant delocalized coordinates is automatically generated from the molecular connectivity thanks to a new general and robust procedure. In order to validate our implementation, a series of molecules has been used as test cases. Among them, rigid systems show that normal modes based on Cartesian and delocalized internal coordinates provide equivalent results, but the latter set is much more convenient and reliable for systems characterized by strong geometric deformations associated with the electronic transition. The so-called Z-matrix internal coordinates, which perform well for chain molecules, are also shown to be poorly suited in the presence of cycles or nonstandard structures.
Accurate Simulation of Resonance-Raman Spectra of Flexible Molecules: An Internal Coordinates Approach
Bloino J.;Barone V.
2015
Abstract
The interpretation and analysis of experimental resonance-Raman (RR) spectra can be significantly facilitated by vibronic computations based on reliable quantum-mechanical (QM) methods. With the aim of improving the description of large and flexible molecules, our recent time-dependent formulation to compute vibrationally resolved electronic spectra, based on Cartesian coordinates, has been extended to support internal coordinates. A set of nonredundant delocalized coordinates is automatically generated from the molecular connectivity thanks to a new general and robust procedure. In order to validate our implementation, a series of molecules has been used as test cases. Among them, rigid systems show that normal modes based on Cartesian and delocalized internal coordinates provide equivalent results, but the latter set is much more convenient and reliable for systems characterized by strong geometric deformations associated with the electronic transition. The so-called Z-matrix internal coordinates, which perform well for chain molecules, are also shown to be poorly suited in the presence of cycles or nonstandard structures.File | Dimensione | Formato | |
---|---|---|---|
J_Chem_Theory_Comput_11_3267_2015_-_Baiardi_RR_Internal_coord.pdf
Accesso chiuso
Descrizione: Articolo
Tipologia:
Published version
Licenza:
Non pubblico
Dimensione
1.96 MB
Formato
Adobe PDF
|
1.96 MB | Adobe PDF | Richiedi una copia |
Accurate_PPrint_Bloino.pdf
accesso aperto
Tipologia:
Accepted version (post-print)
Licenza:
Solo Lettura
Dimensione
2.17 MB
Formato
Adobe PDF
|
2.17 MB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.