In complex networks, centrality metrics quantify the connectivity of nodes and identify the most important ones in the transmission of signals. In many real world networks, especially in transportation systems, links are dynamic, i.e. their presence depends on time, and travelling between two nodes requires a non-vanishing time. Additionally, many networks are structured on several layers, representing, e.g., different transportation modes or service providers. Temporal generalisations of centrality metrics based on walk-counting, like Katz centrality, exist, however they do not account for non-zero link travel times and for the multiplex structure. We propose a generalisation of Katz centrality, termed trip Centrality, counting only the walks that can be travelled according to the network temporal structure, i.e. “trips”, while also differentiating the contributions of inter- and intra- layer walks to centrality. We show an application to the US air transport system, specifically computing airports’ centrality losses due to delays in the flight network.

In complex networks, centrality metrics quantify the connectivity of nodes and identify the most important ones in the transmission of signals. In many real world networks, especially in transportation systems, links are dynamic, i.e. their presence depends on time, and travelling between two nodes requires a non-vanishing time. Additionally, many networks are structured on several layers, representing, e.g., different transportation modes or service providers. Temporal generalisations of centrality metrics based on walk-counting, like Katz centrality, exist, however they do not account for non-zero link travel times and for the multiplex structure. We propose a generalisation of Katz centrality, termed Trip Centrality, counting only the walks that can be travelled according to the network temporal structure, i.e. “trips”, while also differentiating the contributions of inter- and intra-layer walks to centrality. We show an application to the US air transport system, specifically computing airports’ centrality losses due to delays in the flight network.

Trip Centrality: walking on a temporal multiplex with non-instantaneous link travel time

Mazzarisi, Piero;Lillo, Fabrizio
2019

Abstract

In complex networks, centrality metrics quantify the connectivity of nodes and identify the most important ones in the transmission of signals. In many real world networks, especially in transportation systems, links are dynamic, i.e. their presence depends on time, and travelling between two nodes requires a non-vanishing time. Additionally, many networks are structured on several layers, representing, e.g., different transportation modes or service providers. Temporal generalisations of centrality metrics based on walk-counting, like Katz centrality, exist, however they do not account for non-zero link travel times and for the multiplex structure. We propose a generalisation of Katz centrality, termed Trip Centrality, counting only the walks that can be travelled according to the network temporal structure, i.e. “trips”, while also differentiating the contributions of inter- and intra-layer walks to centrality. We show an application to the US air transport system, specifically computing airports’ centrality losses due to delays in the flight network.
2019
Settore SECS-S/06 - Metodi mat. dell'economia e Scienze Attuariali e Finanziarie
Temporal networks; centrality; air traffic
File in questo prodotto:
File Dimensione Formato  
s41598-019-47115-6.pdf

accesso aperto

Tipologia: Published version
Licenza: Creative Commons
Dimensione 1.06 MB
Formato Adobe PDF
1.06 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/83604
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 7
  • OpenAlex ND
social impact