The melanin-free ink of the cephalopod Sepia officinalis is shown to contain a heat labile proteinaceous component toxic to a variety of cell lines, including PC12 cells. Gel filtration chromatography indicated that the toxic component was concentrated in those fractions eluted at a molecular weight higher than 100 kDa and exhibiting the highest tyrosinase activity. SDS-PAGE analysis of the active fractions displayed a single major band migrating at an approximate molecular weight of 100 kDa, identical with that of the single tyrosinase band in the melanin-free ink. These data unambiguously demonstrated the identity of the toxic component with tyrosinase. Treatment of purified Sepia as well as of mushroom tyrosinase with an immobilized version of proteinase K resulted in a parallel loss of tyrosinase activity and cytotoxicity. Sepia apotyrosinase was ineffective in inducing cytotoxicity in PC12 cells. Purified Sepia tyrosinase was found to induce a significant increase in caspase 3 activity in PC12 cells, leading eventually to an irreversible apoptotic process. Overall, these results disclose a hitherto unrecognized property of tyrosinase that may lead to a reappraisal of its biological significance beyond that of a mere pigment producing enzyme.

Toxicity of melanin-free ink of Sepia officinalis to transformed cell lines: identification of the active factor as tyrosinase

M. D'ISCHIA;
2003

Abstract

The melanin-free ink of the cephalopod Sepia officinalis is shown to contain a heat labile proteinaceous component toxic to a variety of cell lines, including PC12 cells. Gel filtration chromatography indicated that the toxic component was concentrated in those fractions eluted at a molecular weight higher than 100 kDa and exhibiting the highest tyrosinase activity. SDS-PAGE analysis of the active fractions displayed a single major band migrating at an approximate molecular weight of 100 kDa, identical with that of the single tyrosinase band in the melanin-free ink. These data unambiguously demonstrated the identity of the toxic component with tyrosinase. Treatment of purified Sepia as well as of mushroom tyrosinase with an immobilized version of proteinase K resulted in a parallel loss of tyrosinase activity and cytotoxicity. Sepia apotyrosinase was ineffective in inducing cytotoxicity in PC12 cells. Purified Sepia tyrosinase was found to induce a significant increase in caspase 3 activity in PC12 cells, leading eventually to an irreversible apoptotic process. Overall, these results disclose a hitherto unrecognized property of tyrosinase that may lead to a reappraisal of its biological significance beyond that of a mere pigment producing enzyme.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/83772
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 46
  • ???jsp.display-item.citation.isi??? 44
  • OpenAlex ND
social impact