Using the theory of Gamma-convergence, we derive from three-dimensional elasticity new one-dimensional models for non-Euclidean elastic ribbons, i.e., ribbons exhibiting spontaneous curvature and twist. We apply the models to shape-selection problems for thin films of nematic elastomers with twist and splay-bend texture of the nematic director. For the former, we discuss the possibility of helicoid-like shapes as an alternative to spiral ribbons.

Shape Programming for Narrow Ribbons of Nematic Elastomers

Agostiniani, Virginia;De Simone, Antonio;
2017

Abstract

Using the theory of Gamma-convergence, we derive from three-dimensional elasticity new one-dimensional models for non-Euclidean elastic ribbons, i.e., ribbons exhibiting spontaneous curvature and twist. We apply the models to shape-selection problems for thin films of nematic elastomers with twist and splay-bend texture of the nematic director. For the former, we discuss the possibility of helicoid-like shapes as an alternative to spiral ribbons.
2017
Settore ICAR/08 - Scienza delle Costruzioni
Nematic elastomers; Dimension reduction; Rod theory
File in questo prodotto:
File Dimensione Formato  
Agostiniani.pdf

Accesso chiuso

Tipologia: Published version
Licenza: Non pubblico
Dimensione 2.09 MB
Formato Adobe PDF
2.09 MB Adobe PDF   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/84108
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 27
  • ???jsp.display-item.citation.isi??? 26
social impact