We examine the singularly perturbed variational problem E ε(ψ) = ∫ ε -1(1 - |∇ψ| 2) 2 + ε|∇∇ψ| 2 in the plane. As ε → 0, this functional favours |∇ψ| = 1 and penalizes singularities where |∇∇ψ| concentrates. Our main result is a compactness theorem: if {E ε(ψ ε)} ε↓0 is uniformly bounded, then {∇ψ ε} ε↓0 is compact in L 2. Thus, in the limit ε → 0, ψ solves the eikonal equation |∇ψ| = 1 almost everywhere. Our analysis uses 'entropy relations' and the 'div-curl lemma,' adopting Tartar's approach to the interaction of linear differential equations and nonlinear algebraic relations.

A compactness result in the gradient theory of phase transitions

DESIMONE A.;
2001

Abstract

We examine the singularly perturbed variational problem E ε(ψ) = ∫ ε -1(1 - |∇ψ| 2) 2 + ε|∇∇ψ| 2 in the plane. As ε → 0, this functional favours |∇ψ| = 1 and penalizes singularities where |∇∇ψ| concentrates. Our main result is a compactness theorem: if {E ε(ψ ε)} ε↓0 is uniformly bounded, then {∇ψ ε} ε↓0 is compact in L 2. Thus, in the limit ε → 0, ψ solves the eikonal equation |∇ψ| = 1 almost everywhere. Our analysis uses 'entropy relations' and the 'div-curl lemma,' adopting Tartar's approach to the interaction of linear differential equations and nonlinear algebraic relations.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/84143
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 79
  • ???jsp.display-item.citation.isi??? 76
  • OpenAlex ND
social impact