Polydopamine (PDA), a black insoluble biopolymer produced by autoxidation of the catecholamine neurotransmitter dopamine (DA), and synthetic eumelanin polymers modeled to the black functional pigments of human skin, hair, and eyes have burst into the scene of materials science as versatile bioinspired functional systems for a very broad range of applications. PDA is characterized by extraordinary adhesion properties providing efficient and universal surface coating for diverse settings that include drug delivery, microfluidic systems, and water-treatment devices. Synthetic eumelanins from dopa or 5,6-dihydroxyindoles are the focus of increasing interest as UV-absorbing agents, antioxidants, free radical scavengers, and water-dependent hybrid electronicionic semiconductors. Because of their peculiar physicochemical properties, eumelanins and PDA hold considerable promise in nanomedicine and bioelectronics, as they are biocompatible, biodegradable, and exhibit suitable mechanical properties for integration with biological tissues. Despite considerable similarities, very few attempts have so far been made to provide an integrated unifying perspective of these two fields of technology-oriented chemical research, and progress toward application has been based more on empirical approaches than on a solid conceptual framework of structureproperty relationships. The present Account is an attempt to fill this gap. Following a vis-a-vis of PDA and eumelanin chemistries, it provides an overall view of the various levels of chemical disorder in both systems and draws simple correlations with physicochemical properties based on experimental and computational approaches. The potential of large-scale simulations to capture the macroproperties of eumelanin-like materials and their hierarchical structures, to predict the physicochemical properties of new melanin-inspired materials, to understand the structurepropertyfunction relationships of these materials from the bottom up, and to design and optimize materials to achieve desired properties is illustrated. The impact of synthetic conditions on melanin structure and physicochemical properties is systematically discussed for the first time. Rational tailoring strategies directed to critical control points of the synthetic pathways, such as dopaquinone, DAquinone, and dopachrome, are then proposed, with a view to translating basic chemical knowledge into practical guidelines for material manipulation and tailoring. This key concept is exemplified by the recent demonstration that varying DA concentration, or using Tris instead of phosphate as the buffer, results in PDA materials with quite different structural properties. Realizing that PDA and synthetic eumelanins belong to the same family of functional materials may foster unprecedented synergisms between research fields that have so far been apart in the pursuit of tailorable and marketable materials for energy, biomedical, and environmental applications.

Polydopamine and Eumelanin: From Structure-Property Relationships to a Unified Tailoring Strategy

D'ISCHIA, MARCO;
2014

Abstract

Polydopamine (PDA), a black insoluble biopolymer produced by autoxidation of the catecholamine neurotransmitter dopamine (DA), and synthetic eumelanin polymers modeled to the black functional pigments of human skin, hair, and eyes have burst into the scene of materials science as versatile bioinspired functional systems for a very broad range of applications. PDA is characterized by extraordinary adhesion properties providing efficient and universal surface coating for diverse settings that include drug delivery, microfluidic systems, and water-treatment devices. Synthetic eumelanins from dopa or 5,6-dihydroxyindoles are the focus of increasing interest as UV-absorbing agents, antioxidants, free radical scavengers, and water-dependent hybrid electronicionic semiconductors. Because of their peculiar physicochemical properties, eumelanins and PDA hold considerable promise in nanomedicine and bioelectronics, as they are biocompatible, biodegradable, and exhibit suitable mechanical properties for integration with biological tissues. Despite considerable similarities, very few attempts have so far been made to provide an integrated unifying perspective of these two fields of technology-oriented chemical research, and progress toward application has been based more on empirical approaches than on a solid conceptual framework of structureproperty relationships. The present Account is an attempt to fill this gap. Following a vis-a-vis of PDA and eumelanin chemistries, it provides an overall view of the various levels of chemical disorder in both systems and draws simple correlations with physicochemical properties based on experimental and computational approaches. The potential of large-scale simulations to capture the macroproperties of eumelanin-like materials and their hierarchical structures, to predict the physicochemical properties of new melanin-inspired materials, to understand the structurepropertyfunction relationships of these materials from the bottom up, and to design and optimize materials to achieve desired properties is illustrated. The impact of synthetic conditions on melanin structure and physicochemical properties is systematically discussed for the first time. Rational tailoring strategies directed to critical control points of the synthetic pathways, such as dopaquinone, DAquinone, and dopachrome, are then proposed, with a view to translating basic chemical knowledge into practical guidelines for material manipulation and tailoring. This key concept is exemplified by the recent demonstration that varying DA concentration, or using Tris instead of phosphate as the buffer, results in PDA materials with quite different structural properties. Realizing that PDA and synthetic eumelanins belong to the same family of functional materials may foster unprecedented synergisms between research fields that have so far been apart in the pursuit of tailorable and marketable materials for energy, biomedical, and environmental applications.
2014
polydopamine; eumelanins
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/84251
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 530
  • ???jsp.display-item.citation.isi??? 503
  • OpenAlex ND
social impact