5,6-Dihydroxyindole (1) and its N-methyl derivative (2), key eumelanin building blocks, were inserted into zeolite L by sublimation at 175 8C for 5 days. At a 10 mg/300 mg indole/zeolite ratio, the resulting hybrids displayed a stable deep red coloration. CP/MAS 13C NMR and UV/Vis spectroscopy of the red species suggested the generation and accommodation of quinonoid biindole derivative(s) within the void space of the acidic zeolite channels. Removal of the zeolite matrix by treatment with HF gave a stable species that could be separated by HPLC and characterized by mass spectrometry as an oxygenated biindole derivative (or a mixture of isomers), suggesting addition of water to the original dimer and subsequent re-oxidation. The characterization was corroborated by optimized molecular geometries and simulated UV spectra with density functional calculations. Loading 1 or 2 into the larger pores of SBA-15 type mesoporous silica resulted in black eumelanin-type polymers, confirming channel size dependence over the polymerization process.

Towards Eumelanin@Zeolite Hybrids: Pore-Size-Controlled 5,6-Dihydroxyindole Polymerization

CRESCENZI, ORLANDO;D'ISCHIA, MARCO;
2014

Abstract

5,6-Dihydroxyindole (1) and its N-methyl derivative (2), key eumelanin building blocks, were inserted into zeolite L by sublimation at 175 8C for 5 days. At a 10 mg/300 mg indole/zeolite ratio, the resulting hybrids displayed a stable deep red coloration. CP/MAS 13C NMR and UV/Vis spectroscopy of the red species suggested the generation and accommodation of quinonoid biindole derivative(s) within the void space of the acidic zeolite channels. Removal of the zeolite matrix by treatment with HF gave a stable species that could be separated by HPLC and characterized by mass spectrometry as an oxygenated biindole derivative (or a mixture of isomers), suggesting addition of water to the original dimer and subsequent re-oxidation. The characterization was corroborated by optimized molecular geometries and simulated UV spectra with density functional calculations. Loading 1 or 2 into the larger pores of SBA-15 type mesoporous silica resulted in black eumelanin-type polymers, confirming channel size dependence over the polymerization process.
2014
hybrid materials; indoles; zeolites; polymerization
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/84298
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 16
  • OpenAlex ND
social impact