Developmental processes in the ascidian Ciona intestinalis depend on a complex interplay of events including, during metamorphosis, a caspase-dependent apoptosis which is regulated by the nitric oxide (NO)-cGMP signaling pathway. Herein we disclose an alternate NO-mediated signaling pathway during Ciona development which appears to be critically dependent on local redox control. Evidence in support of this conclusion includes: (a) inhibitors of NO synthase (NOS) and scavengers of NO-derived nitrating agents markedly decrease the rate of Ciona metamorphosis; (b) an NO donor or peroxynitrite caused an opposite effect; (c) increased protein nitration is obsd. at larva stage. Integrated proteomic and immunochem. methodologies identified nitrated tyrosine residues in ERK and snail. Overall, these results point to protein nitration as a hitherto overlooked NO-dependent regulatory mechanism in Ciona which is specifically triggered by elevated ROS prodn. during developmental processes.

Protein nitration as footprint of oxidative stress-related nitric oxide signaling pathways in developing Ciona intestinalis

d'Ischia M.;
2012

Abstract

Developmental processes in the ascidian Ciona intestinalis depend on a complex interplay of events including, during metamorphosis, a caspase-dependent apoptosis which is regulated by the nitric oxide (NO)-cGMP signaling pathway. Herein we disclose an alternate NO-mediated signaling pathway during Ciona development which appears to be critically dependent on local redox control. Evidence in support of this conclusion includes: (a) inhibitors of NO synthase (NOS) and scavengers of NO-derived nitrating agents markedly decrease the rate of Ciona metamorphosis; (b) an NO donor or peroxynitrite caused an opposite effect; (c) increased protein nitration is obsd. at larva stage. Integrated proteomic and immunochem. methodologies identified nitrated tyrosine residues in ERK and snail. Overall, these results point to protein nitration as a hitherto overlooked NO-dependent regulatory mechanism in Ciona which is specifically triggered by elevated ROS prodn. during developmental processes.
2012
nitrotyrosine; nitric oxide; reactive oxygen species; ascidian; marine organisms
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/84347
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 16
social impact