The cascading scheme is a characteristic feature of quantum cascade (QC) lasers. It implies that electrons above threshold generate one photon per active region they successively traverse, This paper presents a study of the cascading behavior as a function of the number N of stacked active regions. Experimental results are presented for devices with N = 1, 3, 6, 12, 20, 30, 45, 60, and 75 active stages. The highest optical power and lowest threshold current density are obtained for laser devices with N as high as possible. However, the lowest threshold voltage and the lowest dissipated power at laser threshold are achieved for N = 3 and N = 22, respectively. We further present the highest power QC lasers so far, which, using N = 75 stages, show in pulsed mode peak powers of 1.4, 1.1, and 0.54 W at 50 K, 200 K, and room temperature, respectively, Finally, we also demonstrate the first few-stage (N < 10) QC lasers. These QC lasers show strongly reduced operating voltages. A threshold voltage around 1.5 V is achieved for N = 3. This makes the lasers very well compliant with conventional laser diode drivers, which in turn mill simplify their immediate use in systems and applications.
Dependence of the device performance on the number of stages in quantum-cascade lasers
TREDICUCCI, ALESSANDRO;
1999
Abstract
The cascading scheme is a characteristic feature of quantum cascade (QC) lasers. It implies that electrons above threshold generate one photon per active region they successively traverse, This paper presents a study of the cascading behavior as a function of the number N of stacked active regions. Experimental results are presented for devices with N = 1, 3, 6, 12, 20, 30, 45, 60, and 75 active stages. The highest optical power and lowest threshold current density are obtained for laser devices with N as high as possible. However, the lowest threshold voltage and the lowest dissipated power at laser threshold are achieved for N = 3 and N = 22, respectively. We further present the highest power QC lasers so far, which, using N = 75 stages, show in pulsed mode peak powers of 1.4, 1.1, and 0.54 W at 50 K, 200 K, and room temperature, respectively, Finally, we also demonstrate the first few-stage (N < 10) QC lasers. These QC lasers show strongly reduced operating voltages. A threshold voltage around 1.5 V is achieved for N = 3. This makes the lasers very well compliant with conventional laser diode drivers, which in turn mill simplify their immediate use in systems and applications.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.