We report the realization of a mid-infrared (lambda similar or equal to 7 mu m) quantum-cascade laser. in which the emission process takes place between the two lowest minibands of an intrinsic superlattice. Contrary to previous lasers based on doped superlattices, here the dopants are located only inside suitably designed injector regions, where positive ionized donors and negative electrons are arranged to compensate the applied external field across the superlattices. This reduces impurity scattering and translates into low threshold currents (4.2 kA/cm(2) at 10 K) and into room temperature operation, without compromising the large current-carrying capabilities of the minibands. Peak powers of similar to 1.3 W per facet have been obtained from broad-area devices at 10 K, with still more than 1 W at 120 K and 400 mW at 200 K. Effects related to the finite size of the superlattices become visible in the spectral properties, owing to the reduced broadening, and have to be taken into account to accurately describe the laser's behavior. [S0003-6951(98)04419-2].

High-power inter-miniband lasing in intrinsic superlattices

Tredicucci A;
1998

Abstract

We report the realization of a mid-infrared (lambda similar or equal to 7 mu m) quantum-cascade laser. in which the emission process takes place between the two lowest minibands of an intrinsic superlattice. Contrary to previous lasers based on doped superlattices, here the dopants are located only inside suitably designed injector regions, where positive ionized donors and negative electrons are arranged to compensate the applied external field across the superlattices. This reduces impurity scattering and translates into low threshold currents (4.2 kA/cm(2) at 10 K) and into room temperature operation, without compromising the large current-carrying capabilities of the minibands. Peak powers of similar to 1.3 W per facet have been obtained from broad-area devices at 10 K, with still more than 1 W at 120 K and 400 mW at 200 K. Effects related to the finite size of the superlattices become visible in the spectral properties, owing to the reduced broadening, and have to be taken into account to accurately describe the laser's behavior. [S0003-6951(98)04419-2].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/84627
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 50
  • ???jsp.display-item.citation.isi??? 49
social impact