Quantitative entanglement witnesses allow one to bound the entanglement present in a system by acquiring a single expectation value. In this paper, we analyze a special class of such observables which are associated with (generalized) Werner and isotropic states. Their optimal bounding functions can be easily derived by exploiting known results on twirling transformations. By focusing on an explicit local decomposition for these observables, we then show how simple classical post-processing of the measured data can tighten the entanglement bounds. Quantum optics implementations based on hyperentanglement generation schemes are analyzed.

Quantitative entanglement witnesses of isotropic and Werner classes via local measurements

FAZIO, ROSARIO;GIOVANNETTI, VITTORIO
2011

Abstract

Quantitative entanglement witnesses allow one to bound the entanglement present in a system by acquiring a single expectation value. In this paper, we analyze a special class of such observables which are associated with (generalized) Werner and isotropic states. Their optimal bounding functions can be easily derived by exploiting known results on twirling transformations. By focusing on an explicit local decomposition for these observables, we then show how simple classical post-processing of the measured data can tighten the entanglement bounds. Quantum optics implementations based on hyperentanglement generation schemes are analyzed.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11384/9023
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact