The aim of this note is to show that Alexandrov solutions of the Monge–Ampère equation, with right-hand side bounded away from zero and infinity, converge strongly in W2,1loc if their right-hand sides converge strongly in L1loc. As a corollary, we deduce strong W1,1loc stability of optimal transport maps.

Second order stability for the Monge–Ampère equation and strong Sobolev convergence of optimal transport maps

Figalli, Alessio;De Philippis, Guido
2013

Abstract

The aim of this note is to show that Alexandrov solutions of the Monge–Ampère equation, with right-hand side bounded away from zero and infinity, converge strongly in W2,1loc if their right-hand sides converge strongly in L1loc. As a corollary, we deduce strong W1,1loc stability of optimal transport maps.
2013
Monge-Ampère; Sobolev convergence; Stability;
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/91942
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 17
  • OpenAlex ND
social impact