An infinite-dimensional linear time-varying system on the interval (-∞, ∞) is considered. We introduce three quadratic problems: the infinite horizon problem, and one-sided and two-sided average cost problems. A Riccati equation on (-∞, ∞) is considered first and sufficient conditions for the existence and uniqueness of a bounded solution are given. Then by dynamic programming the quadratic problems are solved. Similar problems in the stochastic case are considered.

Quadratic Control for Linear Time-Varying Systems

Ichikawa, Akira;Da Prato, Giuseppe
1990

Abstract

An infinite-dimensional linear time-varying system on the interval (-∞, ∞) is considered. We introduce three quadratic problems: the infinite horizon problem, and one-sided and two-sided average cost problems. A Riccati equation on (-∞, ∞) is considered first and sufficient conditions for the existence and uniqueness of a bounded solution are given. Then by dynamic programming the quadratic problems are solved. Similar problems in the stochastic case are considered.
mar-1990
File in questo prodotto:
File Dimensione Formato  
0328019.pdf

accesso aperto

Descrizione: journal article full text
Tipologia: Altro materiale allegato
Licenza: Non pubblico
Dimensione 2 MB
Formato Adobe PDF
2 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/91968
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 69
  • ???jsp.display-item.citation.isi??? 65
  • OpenAlex ND
social impact