We consider the stochastic reflection problem associated with a self-adjoint operator A and a cylindrical Wiener process on a convex set K with nonempty interior and regular boundary Σ in a Hilbert space H. We prove the existence and uniqueness of a smooth solution for the corresponding elliptic infinite-dimensional Kolmogorov equation with Neumann boundary condition on Σ.
Kolmogorov equation associated to the stochastic reflection problem on a smooth convex set of a Hilbert space
Tubaro, Luciano;Da Prato, Giuseppe;Barbu, Viorel
2009
Abstract
We consider the stochastic reflection problem associated with a self-adjoint operator A and a cylindrical Wiener process on a convex set K with nonempty interior and regular boundary Σ in a Hilbert space H. We prove the existence and uniqueness of a smooth solution for the corresponding elliptic infinite-dimensional Kolmogorov equation with Neumann boundary condition on Σ.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
euclid.aop.1248182143.pdf
accesso aperto
Descrizione: journal article full text
Tipologia:
Altro materiale allegato
Licenza:
Non pubblico
Dimensione
225.32 kB
Formato
Adobe PDF
|
225.32 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.