Annual fishes of the genus Nothobranchius inhabit ephemeral habitats in Eastern and Southeastern Africa. Their life cycle is characterized by very rapid maturation, a posthatch lifespan of a few weeks to months and embryonic diapause to survive the dry season. The species N. furzeri holds the record of the fastest-maturing vertebrate and of the vertebrate with the shortest captive lifespan and is emerging as model organism in biomedical research, evolutionary biology, and developmental biology. Extensive characterization of age-related phenotypes in the laboratory and of ecology, distribution, and demography in the wild are available. Species/populations from habitats differing in precipitation intensity show parallel evolution of lifespan and age-related traits that conform to the classical theories on aging. Genome sequencing and the establishment of CRISPR/Cas9 techniques made this species particularly attractive to investigate the effects genetic and non-genetic intervention on lifespan and aging-related phenotypes. At the same time, annual fishes are a very interesting subject for comparative approaches, including genomics, transcriptomics, and proteomics. The N. furzeri community is highly diverse and rapidly expanding and organizes a biannual meeting.
Nothobranchius annual killifishes
Terzibasi Tozzini, Eva;Cellerino, Alessandro
2020
Abstract
Annual fishes of the genus Nothobranchius inhabit ephemeral habitats in Eastern and Southeastern Africa. Their life cycle is characterized by very rapid maturation, a posthatch lifespan of a few weeks to months and embryonic diapause to survive the dry season. The species N. furzeri holds the record of the fastest-maturing vertebrate and of the vertebrate with the shortest captive lifespan and is emerging as model organism in biomedical research, evolutionary biology, and developmental biology. Extensive characterization of age-related phenotypes in the laboratory and of ecology, distribution, and demography in the wild are available. Species/populations from habitats differing in precipitation intensity show parallel evolution of lifespan and age-related traits that conform to the classical theories on aging. Genome sequencing and the establishment of CRISPR/Cas9 techniques made this species particularly attractive to investigate the effects genetic and non-genetic intervention on lifespan and aging-related phenotypes. At the same time, annual fishes are a very interesting subject for comparative approaches, including genomics, transcriptomics, and proteomics. The N. furzeri community is highly diverse and rapidly expanding and organizes a biannual meeting.File | Dimensione | Formato | |
---|---|---|---|
TerizabsiTozzini 2020.pdf
accesso aperto
Tipologia:
Published version
Licenza:
Creative Commons
Dimensione
1.95 MB
Formato
Adobe PDF
|
1.95 MB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.