Annual fishes of the genus Nothobranchius inhabit ephemeral habitats in Eastern and Southeastern Africa. Their life cycle is characterized by very rapid maturation, a posthatch lifespan of a few weeks to months and embryonic diapause to survive the dry season. The species N. furzeri holds the record of the fastest-maturing vertebrate and of the vertebrate with the shortest captive lifespan and is emerging as model organism in biomedical research, evolutionary biology, and developmental biology. Extensive characterization of age-related phenotypes in the laboratory and of ecology, distribution, and demography in the wild are available. Species/populations from habitats differing in precipitation intensity show parallel evolution of lifespan and age-related traits that conform to the classical theories on aging. Genome sequencing and the establishment of CRISPR/Cas9 techniques made this species particularly attractive to investigate the effects genetic and non-genetic intervention on lifespan and aging-related phenotypes. At the same time, annual fishes are a very interesting subject for comparative approaches, including genomics, transcriptomics, and proteomics. The N. furzeri community is highly diverse and rapidly expanding and organizes a biannual meeting.

Nothobranchius annual killifishes

Terzibasi Tozzini, Eva;Cellerino, Alessandro
2020

Abstract

Annual fishes of the genus Nothobranchius inhabit ephemeral habitats in Eastern and Southeastern Africa. Their life cycle is characterized by very rapid maturation, a posthatch lifespan of a few weeks to months and embryonic diapause to survive the dry season. The species N. furzeri holds the record of the fastest-maturing vertebrate and of the vertebrate with the shortest captive lifespan and is emerging as model organism in biomedical research, evolutionary biology, and developmental biology. Extensive characterization of age-related phenotypes in the laboratory and of ecology, distribution, and demography in the wild are available. Species/populations from habitats differing in precipitation intensity show parallel evolution of lifespan and age-related traits that conform to the classical theories on aging. Genome sequencing and the establishment of CRISPR/Cas9 techniques made this species particularly attractive to investigate the effects genetic and non-genetic intervention on lifespan and aging-related phenotypes. At the same time, annual fishes are a very interesting subject for comparative approaches, including genomics, transcriptomics, and proteomics. The N. furzeri community is highly diverse and rapidly expanding and organizes a biannual meeting.
2020
Settore BIO/09 - Fisiologia
Aging; CRISPR/Cas9; Comparative genomics; Diapause; Extreme habitat; Life history adaptation; Neurodegeneration; RNA-seq; Teleost; Transgenesis
File in questo prodotto:
File Dimensione Formato  
TerizabsiTozzini 2020.pdf

accesso aperto

Tipologia: Published version
Licenza: Creative Commons
Dimensione 1.95 MB
Formato Adobe PDF
1.95 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/94304
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 17
social impact