We introduce a multimodel approach to solve coupled cluster equations, employing a quasi-Newton algorithm for the ground state and an Olsen algorithm for the excited states. In these algorithms, both of which can be viewed as Newton algorithms, the Jacobian matrix of a lower level coupled cluster model is used in Newton equations associated with the target model. Improvements in convergence then imply savings for sufficiently large molecular systems, since the computational cost of macroiterations scales more steeply with system size than the cost of microiterations. The multimodel approach is suitable when there is a lower level Jacobian matrix that is much more accurate than the zeroth order approximation. Applying the approach to the CC3 equations, using the CCSD approximation of the Jacobian, we show that the time spent to determine the ground and valence excited states can be significantly reduced. We also find improved convergence for core excited states, indicating that similar savings will be obtained with an explicit implementation of the core-valence separated CCSD Jacobian transformation.

Accelerated multimodel Newton-type algorithms for faster convergence of ground and excited state coupled cluster equations

Koch H.
2020

Abstract

We introduce a multimodel approach to solve coupled cluster equations, employing a quasi-Newton algorithm for the ground state and an Olsen algorithm for the excited states. In these algorithms, both of which can be viewed as Newton algorithms, the Jacobian matrix of a lower level coupled cluster model is used in Newton equations associated with the target model. Improvements in convergence then imply savings for sufficiently large molecular systems, since the computational cost of macroiterations scales more steeply with system size than the cost of microiterations. The multimodel approach is suitable when there is a lower level Jacobian matrix that is much more accurate than the zeroth order approximation. Applying the approach to the CC3 equations, using the CCSD approximation of the Jacobian, we show that the time spent to determine the ground and valence excited states can be significantly reduced. We also find improved convergence for core excited states, indicating that similar savings will be obtained with an explicit implementation of the core-valence separated CCSD Jacobian transformation.
2020
Settore CHIM/02 - Chimica Fisica
File in questo prodotto:
File Dimensione Formato  
2004.07773.pdf

accesso aperto

Tipologia: Accepted version (post-print)
Licenza: Solo Lettura
Dimensione 424.64 kB
Formato Adobe PDF
424.64 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/94374
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
  • OpenAlex ND
social impact