We present an implementation of equation-of-motion oscillator strengths for the multilevel CCSD (MLCCSD) model where CCS is used as the lower level method (CCS/CCSD). In this model, the double excitations of the cluster operator are restricted to an active orbital space, whereas the single excitations are unrestricted. Calculated nitrogen K-edge spectra of adenosine, adenosine triphosphate (ATP), and an ATP-water system are used to demonstrate the performance of the model. Projected atomic orbitals (PAOs) are used to partition the virtual space into active and inactive orbital sets. Cholesky decomposition of the Hartree-Fock density is used to partition the occupied orbitals. This Cholesky-PAO partitioning is cheap, scaling as O(N3), and is suitable for the calculation of core excitations, which are localized in character. By restricting the single excitations of the cluster operator to the active space, as well as the double excitations, the CCSD-in-HF model is obtained. A comparison of the two models-MLCCSD and CCSD-in-HF-is presented for the core excitation spectra of the adenosine and ATP systems.

Equation-of-Motion MLCCSD and CCSD-in-HF Oscillator Strengths and Their Application to Core Excitations

Koch H.
2020

Abstract

We present an implementation of equation-of-motion oscillator strengths for the multilevel CCSD (MLCCSD) model where CCS is used as the lower level method (CCS/CCSD). In this model, the double excitations of the cluster operator are restricted to an active orbital space, whereas the single excitations are unrestricted. Calculated nitrogen K-edge spectra of adenosine, adenosine triphosphate (ATP), and an ATP-water system are used to demonstrate the performance of the model. Projected atomic orbitals (PAOs) are used to partition the virtual space into active and inactive orbital sets. Cholesky decomposition of the Hartree-Fock density is used to partition the occupied orbitals. This Cholesky-PAO partitioning is cheap, scaling as O(N3), and is suitable for the calculation of core excitations, which are localized in character. By restricting the single excitations of the cluster operator to the active space, as well as the double excitations, the CCSD-in-HF model is obtained. A comparison of the two models-MLCCSD and CCSD-in-HF-is presented for the core excitation spectra of the adenosine and ATP systems.
2020
Settore CHIM/02 - Chimica Fisica
File in questo prodotto:
File Dimensione Formato  
2007.03454.pdf

accesso aperto

Tipologia: Submitted version (pre-print)
Licenza: Solo Lettura
Dimensione 5.9 MB
Formato Adobe PDF
5.9 MB Adobe PDF
acs.jctc.0c00707.pdf

accesso aperto

Tipologia: Published version
Licenza: Creative Commons
Dimensione 1.65 MB
Formato Adobe PDF
1.65 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/94380
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 17
social impact