In this paper we prove a gap phenomenon for critical points of the H-functional on closed non-spherical surfaces when H is constant, and in this setting furthermore prove that sequences of almost critical points satisfy Lojasiewicz inequalities as they approach the first non-trivial bubble tree. To prove these results we derive sufficient conditions for Lojasiewicz inequalities to hold near a finite-dimensional submanifold of almost-critical points for suitable functionals on a Hilbert space.

Łojasiewicz inequalities near simple bubble trees

Malchiodi Andrea
2024

Abstract

In this paper we prove a gap phenomenon for critical points of the H-functional on closed non-spherical surfaces when H is constant, and in this setting furthermore prove that sequences of almost critical points satisfy Lojasiewicz inequalities as they approach the first non-trivial bubble tree. To prove these results we derive sufficient conditions for Lojasiewicz inequalities to hold near a finite-dimensional submanifold of almost-critical points for suitable functionals on a Hilbert space.
2024
Settore MAT/05 - Analisi Matematica
Settore MATH-03/A - Analisi matematica
File in questo prodotto:
File Dimensione Formato  
Loj_MRS_fin.pdf

accesso aperto

Tipologia: Accepted version (post-print)
Licenza: Solo Lettura
Dimensione 839.83 kB
Formato Adobe PDF
839.83 kB Adobe PDF
project_muse_937946.pdf

Accesso chiuso

Tipologia: Published version
Licenza: Non pubblico
Dimensione 539.54 kB
Formato Adobe PDF
539.54 kB Adobe PDF   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/94395
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex 0
social impact