Given a closed Riemann surface $(Sigma,g)$, we use a minmax scheme together with compactness, quantization results and with sharp energy estimates to prove the existence of positive critical points of the functional $$J_{p,eta}(u)=rac{2-p}{2}left(rac{p|u|_{H^1}^2}{2eta} ight)^{rac{p}{2-p}}-ln int_Sigma (e^{u_+^p}-1) dv_g,,$$ for every $pin (1,2)$ and $eta>0$, {or} for $p=1$ and $etain (0,infty)setminus 4pimathbb{N}$. Letting $p\uparrow 2$ we obtain positive critical points of the Moser-Trudinger functional $$F(u):=int_Sigma (e^{u^2}-1)dv_g$$ constrained to $mathcal{E}_eta:=left{v ext{ s.t. }|v|_{H^1}^2=eta ight}$ for any $eta>0$.

Critical points of the Moser-Trudinger functional on closed surfaces

Malchiodi, Andrea;
2022

Abstract

Given a closed Riemann surface $(Sigma,g)$, we use a minmax scheme together with compactness, quantization results and with sharp energy estimates to prove the existence of positive critical points of the functional $$J_{p,eta}(u)=rac{2-p}{2}left(rac{p|u|_{H^1}^2}{2eta} ight)^{rac{p}{2-p}}-ln int_Sigma (e^{u_+^p}-1) dv_g,,$$ for every $pin (1,2)$ and $eta>0$, {or} for $p=1$ and $etain (0,infty)setminus 4pimathbb{N}$. Letting $p\uparrow 2$ we obtain positive critical points of the Moser-Trudinger functional $$F(u):=int_Sigma (e^{u^2}-1)dv_g$$ constrained to $mathcal{E}_eta:=left{v ext{ s.t. }|v|_{H^1}^2=eta ight}$ for any $eta>0$.
2022
Settore MAT/05 - Analisi Matematica
Mean-field equation; bubbling solutions; existence result; inequality; profile
File in questo prodotto:
File Dimensione Formato  
s00222-022-01142-9 (1).pdf

Accesso chiuso

Tipologia: Published version
Licenza: Non pubblico
Dimensione 1.08 MB
Formato Adobe PDF
1.08 MB Adobe PDF   Richiedi una copia
DMMT-rev.pdf

Open Access dal 22/07/2023

Tipologia: Accepted version (post-print)
Licenza: Solo Lettura
Dimensione 741.1 kB
Formato Adobe PDF
741.1 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/94397
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
  • OpenAlex ND
social impact