The nerve growth factor (NGF) is an important pharmacological target for Alzheimer's and other neurodegenerative diseases. Its action derives partly from its binding to the tyrosine kinase A receptor (TrkA). Here we study energetics and dynamics of the NGF-TrkA complex by carrying out multinanosecond molecular dynamics simulations, accompanied by electrostatic calculations based on the Poisson-Boltzmann equation. Our calculations, which are based on the x-ray structure of the complex, suggest that some of the mutations affecting dramatically the affinity of the complex involve residues that form highly favorable, direct or water-mediated hydrogen bond interactions at the ligand-receptor interface and, in some cases, that also critically participate to the large-scale motions of the complex. Furthermore, our calculations offer a rationale for the small effect on binding affinity observed upon specific mutations involving large changes in electrostatics (i.e., the charged-to-neutral mutations). Finally, these calculations, used along with the mutagenesis data, provide a basis for designing new peptides that mimic NGF in TrkA binding function.

Molecular dynamics simulations of the NGF-TrkA domain 5 complex and comparison with biological data

CATTANEO, ANTONINO;
2003

Abstract

The nerve growth factor (NGF) is an important pharmacological target for Alzheimer's and other neurodegenerative diseases. Its action derives partly from its binding to the tyrosine kinase A receptor (TrkA). Here we study energetics and dynamics of the NGF-TrkA complex by carrying out multinanosecond molecular dynamics simulations, accompanied by electrostatic calculations based on the Poisson-Boltzmann equation. Our calculations, which are based on the x-ray structure of the complex, suggest that some of the mutations affecting dramatically the affinity of the complex involve residues that form highly favorable, direct or water-mediated hydrogen bond interactions at the ligand-receptor interface and, in some cases, that also critically participate to the large-scale motions of the complex. Furthermore, our calculations offer a rationale for the small effect on binding affinity observed upon specific mutations involving large changes in electrostatics (i.e., the charged-to-neutral mutations). Finally, these calculations, used along with the mutagenesis data, provide a basis for designing new peptides that mimic NGF in TrkA binding function.
2003
File in questo prodotto:
File Dimensione Formato  
Settanni Cattaneo Biophys J 2003.pdf

Accesso chiuso

Tipologia: Altro materiale allegato
Licenza: Non pubblico
Dimensione 653.47 kB
Formato Adobe PDF
653.47 kB Adobe PDF   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/953
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 23
  • OpenAlex ND
social impact