The nerve growth factor (NGF) is an important pharmacological target for Alzheimer's and other neurodegenerative diseases. Its action derives partly from its binding to the tyrosine kinase A receptor (TrkA). Here we study energetics and dynamics of the NGF-TrkA complex by carrying out multinanosecond molecular dynamics simulations, accompanied by electrostatic calculations based on the Poisson-Boltzmann equation. Our calculations, which are based on the x-ray structure of the complex, suggest that some of the mutations affecting dramatically the affinity of the complex involve residues that form highly favorable, direct or water-mediated hydrogen bond interactions at the ligand-receptor interface and, in some cases, that also critically participate to the large-scale motions of the complex. Furthermore, our calculations offer a rationale for the small effect on binding affinity observed upon specific mutations involving large changes in electrostatics (i.e., the charged-to-neutral mutations). Finally, these calculations, used along with the mutagenesis data, provide a basis for designing new peptides that mimic NGF in TrkA binding function.
Molecular dynamics simulations of the NGF-TrkA domain 5 complex and comparison with biological data
CATTANEO, ANTONINO;
2003
Abstract
The nerve growth factor (NGF) is an important pharmacological target for Alzheimer's and other neurodegenerative diseases. Its action derives partly from its binding to the tyrosine kinase A receptor (TrkA). Here we study energetics and dynamics of the NGF-TrkA complex by carrying out multinanosecond molecular dynamics simulations, accompanied by electrostatic calculations based on the Poisson-Boltzmann equation. Our calculations, which are based on the x-ray structure of the complex, suggest that some of the mutations affecting dramatically the affinity of the complex involve residues that form highly favorable, direct or water-mediated hydrogen bond interactions at the ligand-receptor interface and, in some cases, that also critically participate to the large-scale motions of the complex. Furthermore, our calculations offer a rationale for the small effect on binding affinity observed upon specific mutations involving large changes in electrostatics (i.e., the charged-to-neutral mutations). Finally, these calculations, used along with the mutagenesis data, provide a basis for designing new peptides that mimic NGF in TrkA binding function.File | Dimensione | Formato | |
---|---|---|---|
Settanni Cattaneo Biophys J 2003.pdf
Accesso chiuso
Tipologia:
Altro materiale allegato
Licenza:
Non pubblico
Dimensione
653.47 kB
Formato
Adobe PDF
|
653.47 kB | Adobe PDF | Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.