The single electron track-reconstruction efficiency is calibrated using a sample corresponding to 1.3 fb-1 of pp collision data recorded with the LHCb detector in 2017. This measurement exploits B+ J/ψ(e+e-)K+ decays, where one of the electrons is fully reconstructed and paired with the kaon, while the other electron is reconstructed using only the information of the vertex detector. Despite this partial reconstruction, kinematic and geometric constraints allow the B meson mass to be reconstructed and the signal to be well separated from backgrounds. This in turn allows the electron reconstruction efficiency to be measured by matching the partial track segment found in the vertex detector to tracks found by LHCb's regular reconstruction algorithms. The agreement between data and simulation is evaluated, and corrections are derived for simulated electrons in bins of kinematics. These correction factors allow LHCb to measure branching fractions involving single electrons with a systematic uncertainty below 1%.

Measurement of the electron reconstruction efficiency at LHCb

Lusiani, A.
Membro del Collaboration Group
;
Morello, M. J.
Membro del Collaboration Group
;
Pajero, T.
Membro del Collaboration Group
;
2019

Abstract

The single electron track-reconstruction efficiency is calibrated using a sample corresponding to 1.3 fb-1 of pp collision data recorded with the LHCb detector in 2017. This measurement exploits B+ J/ψ(e+e-)K+ decays, where one of the electrons is fully reconstructed and paired with the kaon, while the other electron is reconstructed using only the information of the vertex detector. Despite this partial reconstruction, kinematic and geometric constraints allow the B meson mass to be reconstructed and the signal to be well separated from backgrounds. This in turn allows the electron reconstruction efficiency to be measured by matching the partial track segment found in the vertex detector to tracks found by LHCb's regular reconstruction algorithms. The agreement between data and simulation is evaluated, and corrections are derived for simulated electrons in bins of kinematics. These correction factors allow LHCb to measure branching fractions involving single electrons with a systematic uncertainty below 1%.
2019
Settore FIS/01 - Fisica Sperimentale
calibration and fitting methods; Performance of High Energy Physics Detectors; cluster finding; Pattern recognition;
File in questo prodotto:
File Dimensione Formato  
Aaij_2019_J._Inst._14_P11023.pdf

accesso aperto

Tipologia: Published version
Licenza: Creative Commons
Dimensione 1.52 MB
Formato Adobe PDF
1.52 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/96063
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 6
social impact