In this paper we prove a conjecture of J. Andrade, S.J. Miller, K. Pratt and M. Trinh, showing the existence of a non-trivial infinite F-set over Fq[x] for every fixed q. We also provide the proof of a refinement of the conjecture, involving the notion of width of an F-set, which is a natural number encoding the complexity of the set.

On the existence of infinite, non-trivial F-sets

Ferraguti, Andrea;
2016

Abstract

In this paper we prove a conjecture of J. Andrade, S.J. Miller, K. Pratt and M. Trinh, showing the existence of a non-trivial infinite F-set over Fq[x] for every fixed q. We also provide the proof of a refinement of the conjecture, involving the notion of width of an F-set, which is a natural number encoding the complexity of the set.
Settore MAT/03 - Geometria
F-sets; Finite fields; Polynomials
File in questo prodotto:
File Dimensione Formato  
1602.06608.pdf

accesso aperto

Tipologia: Submitted version (pre-print)
Licenza: Creative commons
Dimensione 179.65 kB
Formato Adobe PDF
179.65 kB Adobe PDF Visualizza/Apri
1-s2.0-S0022314X16300786-main.pdf

Accesso chiuso

Tipologia: Published version
Licenza: Non pubblico
Dimensione 321.11 kB
Formato Adobe PDF
321.11 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11384/101127
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact