In this paper we prove a conjecture of J. Andrade, S.J. Miller, K. Pratt and M. Trinh, showing the existence of a non-trivial infinite F-set over Fq[x] for every fixed q. We also provide the proof of a refinement of the conjecture, involving the notion of width of an F-set, which is a natural number encoding the complexity of the set.
On the existence of infinite, non-trivial F-sets
Ferraguti, Andrea;
2016
Abstract
In this paper we prove a conjecture of J. Andrade, S.J. Miller, K. Pratt and M. Trinh, showing the existence of a non-trivial infinite F-set over Fq[x] for every fixed q. We also provide the proof of a refinement of the conjecture, involving the notion of width of an F-set, which is a natural number encoding the complexity of the set.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
1602.06608.pdf
accesso aperto
Tipologia:
Submitted version (pre-print)
Licenza:
Solo Lettura
Dimensione
179.65 kB
Formato
Adobe PDF
|
179.65 kB | Adobe PDF | |
1-s2.0-S0022314X16300786-main.pdf
Accesso chiuso
Tipologia:
Published version
Licenza:
Non pubblico
Dimensione
321.11 kB
Formato
Adobe PDF
|
321.11 kB | Adobe PDF | Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.