In this paper we study the family of embeddings Φt of a compact RCD⁎(K,N) space (X,d,m) into L2(X,m) via eigenmaps. Extending part of the classical results [10,11] known for closed Riemannian manifolds, we prove convergence as t↓0 of the rescaled pull-back metrics Φt⁎gLjavax.xml.bind.JAXBElement@72a55be1 in L2(X,m) induced by Φt. Moreover we discuss the behavior of Φt⁎gLjavax.xml.bind.JAXBElement@7b559b3f with respect to measured Gromov-Hausdorff convergence and t. Applications include the quantitative Lp-convergence in the noncollapsed setting for all p<∞, a result new even for closed Riemannian manifolds and Alexandrov spaces.
Embedding of RCD⁎(K,N) spaces in L2 via eigenfunctions
Ambrosio L.;Portegies J. W.;Tewodrose D.
2021
Abstract
In this paper we study the family of embeddings Φt of a compact RCD⁎(K,N) space (X,d,m) into L2(X,m) via eigenmaps. Extending part of the classical results [10,11] known for closed Riemannian manifolds, we prove convergence as t↓0 of the rescaled pull-back metrics Φt⁎gLjavax.xml.bind.JAXBElement@72a55be1 in L2(X,m) induced by Φt. Moreover we discuss the behavior of Φt⁎gLjavax.xml.bind.JAXBElement@7b559b3f with respect to measured Gromov-Hausdorff convergence and t. Applications include the quantitative Lp-convergence in the noncollapsed setting for all p<∞, a result new even for closed Riemannian manifolds and Alexandrov spaces.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S0022123621000501-main.pdf
Accesso chiuso
Tipologia:
Published version
Licenza:
Non pubblico
Dimensione
1.01 MB
Formato
Adobe PDF
|
1.01 MB | Adobe PDF | Richiedi una copia |
11384_101237.pdf
Open Access dal 19/02/2023
Tipologia:
Accepted version (post-print)
Licenza:
Solo Lettura
Dimensione
676.08 kB
Formato
Adobe PDF
|
676.08 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.