In this paper we study the family of embeddings Φt of a compact RCD⁎(K,N) space (X,d,m) into L2(X,m) via eigenmaps. Extending part of the classical results [10,11] known for closed Riemannian manifolds, we prove convergence as t↓0 of the rescaled pull-back metrics Φt⁎gLjavax.xml.bind.JAXBElement@72a55be1 in L2(X,m) induced by Φt. Moreover we discuss the behavior of Φt⁎gLjavax.xml.bind.JAXBElement@7b559b3f with respect to measured Gromov-Hausdorff convergence and t. Applications include the quantitative Lp-convergence in the noncollapsed setting for all p<∞, a result new even for closed Riemannian manifolds and Alexandrov spaces.

Embedding of RCD⁎(K,N) spaces in L2 via eigenfunctions

Ambrosio L.;Portegies J. W.;Tewodrose D.
2021

Abstract

In this paper we study the family of embeddings Φt of a compact RCD⁎(K,N) space (X,d,m) into L2(X,m) via eigenmaps. Extending part of the classical results [10,11] known for closed Riemannian manifolds, we prove convergence as t↓0 of the rescaled pull-back metrics Φt⁎gLjavax.xml.bind.JAXBElement@72a55be1 in L2(X,m) induced by Φt. Moreover we discuss the behavior of Φt⁎gLjavax.xml.bind.JAXBElement@7b559b3f with respect to measured Gromov-Hausdorff convergence and t. Applications include the quantitative Lp-convergence in the noncollapsed setting for all p<∞, a result new even for closed Riemannian manifolds and Alexandrov spaces.
2021
Settore MAT/05 - Analisi Matematica
Settore MATH-03/A - Analisi matematica
Heat kernel; Laplacian; Metric measure spaces; Ricci curvature;
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0022123621000501-main.pdf

Accesso chiuso

Tipologia: Published version
Licenza: Non pubblico
Dimensione 1.01 MB
Formato Adobe PDF
1.01 MB Adobe PDF   Richiedi una copia
11384_101237.pdf

Open Access dal 19/02/2023

Tipologia: Accepted version (post-print)
Licenza: Solo Lettura
Dimensione 676.08 kB
Formato Adobe PDF
676.08 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/101237
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 16
  • OpenAlex ND
social impact