The key challenge in the observation of the redshifted 21-cm signal from cosmic reionization is its separation from the much brighter foreground emission. Such separation relies on the different spectral properties of the two components, although, in real life, the foreground intrinsic spectrum is often corrupted by the instrumental response, inducing systematic effects that can further jeopardize the measurement of the 21-cm signal. In this paper, we use Gaussian Process Regression to model both foreground emission and instrumental systematics in ∼2 h of data from the Hydrogen Epoch of Reionization Array. We find that a simple co-variance model with three components matches the data well, giving a residual power spectrum with white noise properties. These consist of an 'intrinsic' and instrumentally corrupted component with a coherence scale of 20 and 2.4 MHz, respectively (dominating the line-of-sight power spectrum over scales kâ ≤ 0.2 h cMpc-1) and a baseline-dependent periodic signal with a period of ∼1 MHz (dominating over kâ ∼0.4-0.8 h cMpc-1), which should be distinguishable from the 21-cm Epoch of Reionization signal whose typical coherence scale is ∼0.8 MHz.

The key challenge in the observation of the redshifted 21-cm signal from cosmic reionization is its separation from the much brighter foreground emission. Such separation relies on the different spectral properties of the two components, although, in real life, the foreground intrinsic spectrum is often corrupted by the instrumental response, inducing systematic effects that can further jeopardize the measurement of the 21-cm signal. In this paper, we use Gaussian Process Regression to model both foreground emission and instrumental systematics in ∼2 h of data from the Hydrogen Epoch of Reionization Array. We find that a simple co-variance model with three components matches the data well, giving a residual power spectrum with white noise properties. These consist of an 'intrinsic' and instrumentally corrupted component with a coherence scale of 20 and 2.4 MHz, respectively (dominating the line-of-sight power spectrum over scales kâ ≤ 0.2 h cMpc-1) and a baseline-dependent periodic signal with a period of ∼1 MHz (dominating over kâ ∼0.4-0.8 h cMpc-1), which should be distinguishable from the 21-cm Epoch of Reionization signal whose typical coherence scale is ∼0.8 MHz.

Foreground modelling via Gaussian process regression: An application to HERA data

Ghosh A.;Bernardi G.;Liu A.;Greig B.;Mesinger A.;Thyagarajan N.;Ghosh A.;Bernardi G.
2020

Abstract

The key challenge in the observation of the redshifted 21-cm signal from cosmic reionization is its separation from the much brighter foreground emission. Such separation relies on the different spectral properties of the two components, although, in real life, the foreground intrinsic spectrum is often corrupted by the instrumental response, inducing systematic effects that can further jeopardize the measurement of the 21-cm signal. In this paper, we use Gaussian Process Regression to model both foreground emission and instrumental systematics in ∼2 h of data from the Hydrogen Epoch of Reionization Array. We find that a simple co-variance model with three components matches the data well, giving a residual power spectrum with white noise properties. These consist of an 'intrinsic' and instrumentally corrupted component with a coherence scale of 20 and 2.4 MHz, respectively (dominating the line-of-sight power spectrum over scales kâ ≤ 0.2 h cMpc-1) and a baseline-dependent periodic signal with a period of ∼1 MHz (dominating over kâ ∼0.4-0.8 h cMpc-1), which should be distinguishable from the 21-cm Epoch of Reionization signal whose typical coherence scale is ∼0.8 MHz.
Settore FIS/05 - Astronomia e Astrofisica
cosmology: observations; dark ages, reionization, first stars; diffuse radiation; instrumentation: interferometers; large-scale structure of Universe; methods: statistical
File in questo prodotto:
File Dimensione Formato  
staa1331.pdf

accesso aperto

Tipologia: Published version
Licenza: Creative commons
Dimensione 16.01 MB
Formato Adobe PDF
16.01 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11384/102281
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 11
social impact