The origin and the evolution of the universe are concealed in the evanescent diffuse extragalactic background radiation (DEBRA). To reveal these signals, the development of innovative ultra-sensitive bolometers operating in the gigahertz band is required. Here, we review the design and experimental realization of two bias-current-tunable sensors based on one dimensional fully superconducting Josephson junctions: the nanoscale transition edge sensor (nano-TES) and the Josephson escape sensor (JES). In particular, we cover the theoretical basis of the sensors operation, the device fabrication, their experimental electronic and thermal characterization and the deduced detection performance. Indeed, the nano-TES promises a state-of-the-art noise equivalent power (NEP) of about 5 × 10−20 W/√Hz, while the JES active region is expected to show an unprecedented NEP of the order of 10−25 W/√Hz. Therefore, the nano-TES and JES are strong candidates to push radio astronomy to the next level.
Titolo: | Fully superconducting josephson bolometers for gigahertz astronomy | |
Autori: | ||
Data di pubblicazione: | 2021 | |
Rivista: | ||
Digital Object Identifier (DOI): | http://dx.doi.org/10.3390/app11020746 | |
Settore Scientifico Disciplinare: | Settore FIS/03 - Fisica della Materia | |
Parole Chiave: | Gigahertz detection; Josephson effect; Josephson escape sensor; Nanodevices; Radio astronomy; Transition edge sensor | |
Handle: | http://hdl.handle.net/11384/110024 | |
Appare nelle tipologie: |