Recently, the Hydrogen Epoch of Reionization Array (HERA) has produced the experiment's first upper limits on the power spectrum of 21 cm fluctuations at z ∼ 8 and 10. Here, we use several independent theoretical models to infer constraints on the intergalactic medium (IGM) and galaxies during the epoch of reionization from these limits. We find that the IGM must have been heated above the adiabatic-cooling threshold by z ∼ 8, independent of uncertainties about IGM ionization and the radio background. Combining HERA limits with complementary observations constrains the spin temperature of the z ∼ 8 neutral IGM to 27 K 630 K (2.3 K 640 K) at 68% (95%) confidence. They therefore also place a lower bound on X-ray heating, a previously unconstrained aspects of early galaxies. For example, if the cosmic microwave background dominates the z ∼ 8 radio background, the new HERA limits imply that the first galaxies produced X-rays more efficiently than local ones. The z ∼ 10 limits require even earlier heating if dark-matter interactions cool the hydrogen gas. If an extra radio background is produced by galaxies, we rule out (at 95% confidence) the combination of high radio and low X-ray luminosities of L r,ν /SFR > 4 × 1024 W Hz-1 yr and L X /SFR < 7.6 × 1039 erg s-1 yr. The new HERA upper limits neither support nor disfavor a cosmological interpretation of the recent Experiment to Detect the Global EOR Signature (EDGES) measurement. The framework described here provides a foundation for the interpretation of future HERA results.
HERA Phase i Limits on the Cosmic 21 cm Signal: Constraints on Astrophysics and Cosmology during the Epoch of Reionization
Barkana R.;Bernardi G.;Fialkov A.;Greig B.;Hewitt J. N.;Liu A.;Mesinger A.;Qin Y.;Smith C.;Thyagarajan N.;
2022
Abstract
Recently, the Hydrogen Epoch of Reionization Array (HERA) has produced the experiment's first upper limits on the power spectrum of 21 cm fluctuations at z ∼ 8 and 10. Here, we use several independent theoretical models to infer constraints on the intergalactic medium (IGM) and galaxies during the epoch of reionization from these limits. We find that the IGM must have been heated above the adiabatic-cooling threshold by z ∼ 8, independent of uncertainties about IGM ionization and the radio background. Combining HERA limits with complementary observations constrains the spin temperature of the z ∼ 8 neutral IGM to 27 K 630 K (2.3 K 640 K) at 68% (95%) confidence. They therefore also place a lower bound on X-ray heating, a previously unconstrained aspects of early galaxies. For example, if the cosmic microwave background dominates the z ∼ 8 radio background, the new HERA limits imply that the first galaxies produced X-rays more efficiently than local ones. The z ∼ 10 limits require even earlier heating if dark-matter interactions cool the hydrogen gas. If an extra radio background is produced by galaxies, we rule out (at 95% confidence) the combination of high radio and low X-ray luminosities of L r,ν /SFR > 4 × 1024 W Hz-1 yr and L X /SFR < 7.6 × 1039 erg s-1 yr. The new HERA upper limits neither support nor disfavor a cosmological interpretation of the recent Experiment to Detect the Global EOR Signature (EDGES) measurement. The framework described here provides a foundation for the interpretation of future HERA results.File | Dimensione | Formato | |
---|---|---|---|
2108.07282.pdf
Accesso chiuso
Tipologia:
Submitted version (pre-print)
Licenza:
Non pubblico
Dimensione
8.08 MB
Formato
Adobe PDF
|
8.08 MB | Adobe PDF | Richiedi una copia |
Abdurashidova_2022_ApJ_924_51.pdf
accesso aperto
Tipologia:
Published version
Licenza:
Creative Commons
Dimensione
8.38 MB
Formato
Adobe PDF
|
8.38 MB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.