We investigate in detail solutions of supergravity that involve warped products of flat geometries of the type Mp+1× R × TD−p−2 depending on a single coordinate. In the absence of fluxes, the solutions include flat space and Kasner-like vacua that break all supersymmetries. In the presence of a symmetric flux, there are three families of solutions that are characterized by a pair of boundaries and have a singularity at one of them, the origin. The first family comprises supersymmetric vacua, which capture a universal limiting behavior at the origin. The first and second families also contain non-supersymmetric solutions whose behavior at the other boundary, which can lie at a finite or infinite distance, is captured by the no-flux solutions. The solutions of the third family have a second boundary at a finite distance where they approach again the supersymmetric backgrounds. These vacua exhibit a variety of interesting scenarios, which include compactifications on finite intervals and p + 1-dimensional effective theories where the string coupling has an upper bound. We also build corresponding cosmologies, and in some of them the string coupling can be finite throughout the evolution.

On warped string vacuum profiles and cosmologies. Part I. Supersymmetric strings

Sagnotti A.
Writing – Original Draft Preparation
2021

Abstract

We investigate in detail solutions of supergravity that involve warped products of flat geometries of the type Mp+1× R × TD−p−2 depending on a single coordinate. In the absence of fluxes, the solutions include flat space and Kasner-like vacua that break all supersymmetries. In the presence of a symmetric flux, there are three families of solutions that are characterized by a pair of boundaries and have a singularity at one of them, the origin. The first family comprises supersymmetric vacua, which capture a universal limiting behavior at the origin. The first and second families also contain non-supersymmetric solutions whose behavior at the other boundary, which can lie at a finite or infinite distance, is captured by the no-flux solutions. The solutions of the third family have a second boundary at a finite distance where they approach again the supersymmetric backgrounds. These vacua exhibit a variety of interesting scenarios, which include compactifications on finite intervals and p + 1-dimensional effective theories where the string coupling has an upper bound. We also build corresponding cosmologies, and in some of them the string coupling can be finite throughout the evolution.
2021
Settore FIS/02 - Fisica Teorica, Modelli e Metodi Matematici
Field Theories in Higher Dimensions; Flux compactifications; Superstring Vacua; Supersymmetry Breaking; High Energy Physics - Theory; High Energy Physics - Theory; astro-ph.CO; General Relativity and Quantum Cosmology; High Energy Physics - Phenomenology
File in questo prodotto:
File Dimensione Formato  
2109.06852.pdf

accesso aperto

Tipologia: Submitted version (pre-print)
Licenza: Creative Commons
Dimensione 488.38 kB
Formato Adobe PDF
488.38 kB Adobe PDF
11384_111384.pdf

accesso aperto

Tipologia: Published version
Licenza: Creative Commons
Dimensione 675.18 kB
Formato Adobe PDF
675.18 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/111384
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 6
social impact