Quantum transport in a class of nonlinear extensions of the Rudner-Levitov model is numerically studied in this paper. We show that the quantization of the mean displacement, which embodies the quantum coherence and the topological characteristics of the model, is markedly modified by nonlinearities. Peculiar effects such as a trivial-nontrivial transition and unidirectional long-range quantum transport are observed. These phenomena can be understood on the basis of the dynamic behavior of the effective hopping terms, which are time and position dependent, containing contributions of both the linear and nonlinear couplings.

Quantum transport in nonlinear Rudner-Levitov models

Du, L;Artoni, M;La Rocca, GC
2022

Abstract

Quantum transport in a class of nonlinear extensions of the Rudner-Levitov model is numerically studied in this paper. We show that the quantization of the mean displacement, which embodies the quantum coherence and the topological characteristics of the model, is markedly modified by nonlinearities. Peculiar effects such as a trivial-nontrivial transition and unidirectional long-range quantum transport are observed. These phenomena can be understood on the basis of the dynamic behavior of the effective hopping terms, which are time and position dependent, containing contributions of both the linear and nonlinear couplings.
Settore FIS/03 - Fisica della Materia
quantum transport; topological photonics
File in questo prodotto:
File Dimensione Formato  
NLtransportPostprint.pdf

accesso aperto

Descrizione: manoscritto
Tipologia: Accepted version (post-print)
Licenza: Accesso gratuito (sola lettura)
Dimensione 2.71 MB
Formato Adobe PDF
2.71 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/124802
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact