We present a scheme to generate photon-pair states through resonant spontaneous four-wave mixing (SFWM) in a five-level double-bowtie (Da) configuration subject to two pumping fields and one coupling field when a quasidark state is created between two of three ground levels. The quasidark state is used here to largely suppress linear resonant absorption (gain) of the generated photon pairs while supporting strong SFWM nonlinearities and nonclassical cross-correlation. Numerical results for cold atomic samples show that the generation efficiency may be comparable to or even larger than that obtained in the off-resonance four-level single-bowtie configuration with only one pumping field. This scheme is robust to fluctuations of atomic populations and enables one to easily control the ratio of two rates with which distinct SFWM processes generate photon-pair states.

Photon-pair generation on resonance via a dark state

Artoni, M;La Rocca, GC;
2022

Abstract

We present a scheme to generate photon-pair states through resonant spontaneous four-wave mixing (SFWM) in a five-level double-bowtie (Da) configuration subject to two pumping fields and one coupling field when a quasidark state is created between two of three ground levels. The quasidark state is used here to largely suppress linear resonant absorption (gain) of the generated photon pairs while supporting strong SFWM nonlinearities and nonclassical cross-correlation. Numerical results for cold atomic samples show that the generation efficiency may be comparable to or even larger than that obtained in the off-resonance four-level single-bowtie configuration with only one pumping field. This scheme is robust to fluctuations of atomic populations and enables one to easily control the ratio of two rates with which distinct SFWM processes generate photon-pair states.
2022
Settore FIS/03 - Fisica della Materia
quantum optics; nonlinear optics
File in questo prodotto:
File Dimensione Formato  
AQ12222.pdf

accesso aperto

Descrizione: bozza finale
Tipologia: Accepted version (post-print)
Licenza: Solo Lettura
Dimensione 673.46 kB
Formato Adobe PDF
673.46 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/124804
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
  • OpenAlex ND
social impact