This paper presents results from the SESAR ER3 Domino project. Three mechanisms are assessed at the ECAC-wide level: 4D trajectory adjustments (a combination of actively waiting for connecting passengers and dynamic cost indexing), flight prioritisation (enabling ATFM slot swapping at arrival regulations), and flight arrival coordination (where flights are sequenced in extended arrival managers based on an advanced cost-driven optimisation). Classical and new metrics, designed to capture network effects, are used to analyse the results of a micro-level agent-based model. A scenario with congestion at three hubs is used to assess the 4D trajectory adjustment and the flight prioritisation mechanisms. Two different scopes for the extended arrival manager are modelled to analyse the impact of the flight arrival coordination mechanism. Results show that the 4D trajectory adjustments mechanism succeeds in reducing costs and delays for connecting passengers. A trade-off between the interests of the airlines in reducing costs and those of non-connecting passengers emerges, although passengers benefit overall from the mechanism. Flight prioritisation is found to have no significant effects at the network level, as it is applied to a small number of flights. Advanced flight arrival coordination, as implemented, increases delays and costs in the system. The arrival manager optimises the arrival sequence of all flights within its scope but does not consider flight uncertainties, thus leading to sub-optimal actions.
Network-wide assessment of ATM mechanisms using an agent-based model
Delgado, Luis;Mazzarisi, Piero;Lillo, Fabrizio
2021
Abstract
This paper presents results from the SESAR ER3 Domino project. Three mechanisms are assessed at the ECAC-wide level: 4D trajectory adjustments (a combination of actively waiting for connecting passengers and dynamic cost indexing), flight prioritisation (enabling ATFM slot swapping at arrival regulations), and flight arrival coordination (where flights are sequenced in extended arrival managers based on an advanced cost-driven optimisation). Classical and new metrics, designed to capture network effects, are used to analyse the results of a micro-level agent-based model. A scenario with congestion at three hubs is used to assess the 4D trajectory adjustment and the flight prioritisation mechanisms. Two different scopes for the extended arrival manager are modelled to analyse the impact of the flight arrival coordination mechanism. Results show that the 4D trajectory adjustments mechanism succeeds in reducing costs and delays for connecting passengers. A trade-off between the interests of the airlines in reducing costs and those of non-connecting passengers emerges, although passengers benefit overall from the mechanism. Flight prioritisation is found to have no significant effects at the network level, as it is applied to a small number of flights. Advanced flight arrival coordination, as implemented, increases delays and costs in the system. The arrival manager optimises the arrival sequence of all flights within its scope but does not consider flight uncertainties, thus leading to sub-optimal actions.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S0969699721000910-main.pdf
Accesso chiuso
Tipologia:
Published version
Licenza:
Non pubblico
Dimensione
1.68 MB
Formato
Adobe PDF
|
1.68 MB | Adobe PDF | Richiedi una copia |
JATM2021-102108.pdf
Open Access dal 07/07/2023
Tipologia:
Accepted version (post-print)
Licenza:
Creative Commons
Dimensione
3.99 MB
Formato
Adobe PDF
|
3.99 MB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.